
�

Gernot Hoffmann

Contents

Rectification by Photogrammetry

Settings for Acrobat

Edit / Preferences / General / Page Display (since version 6)
Custom Resolution 72dpi / View by zoom �00% or 200%

Edit / Preferences / General / Color Management (full version only)
sRGB

Euroscale Coated or ISO Coated or SWOP
Gray Gamma 2.2

�. Introduction 2
2. Reconstruction of the aspect ratio 3
3. Calculation of the aspect ratio 4
4. Test results for the calculation 6
5. One tilt angle 8
6. Procedures for projective mapping 9

2

1. Introduction

Four mouselines define a quadrilateral, which should be rectified to a regular
rectangle. Methods of photogrammetry are applied: projective mapping, which
includes also translation, rotation, scaling and shear.

Now the façade is rectified. The aspect ratio is not accurate because no land-
marks are available. Missing parts were reconstructed, e.g. the top of the roof
and parts of the right house. The image was sharpened and the entrance made
lighter. All applications by ZEBRA, a program by the author.
The photo shows the Old Hospital in Stonetown, Zanzibar, East Africa.

3

F�F2

F3

F4

X�

X2

X4

X3

f

h

a

b

c

v

u

z

x

y

v

u

Object Rectangles Image Plane

2. Reconstruction of the Aspect Ratio

Is it possible to calculate the aspect ratio of an arbitrary object rectangle by
rectification of an image quadrilateral ?

It is assumed that the photo was taken by a standard camera: the image plane
is orthogonal to the viewline. Both scalefactors for f and h are equal and lens
distortions may be neglectable.
The view line shall hit the center C of the red rectangle which represents e.g. a
house façade. The principal point P is in the center of the film negative, therefore
well known if the image is not cropped.

Can we assign to the image F�...F4 another object rectangle (blue) which has a
different aspect ratio? The center of projection CP is allowed to move along the
view line.
This looks unlikely and therefore we assume, that the aspect ratio is unique for
the image. The next step is an attempt to calculate the aspect ratio.

How is this problem solved in ZEBRA applications, previous page ?
The width of the rectified rectangle is estimated by the average of the upper
and lower width of the quadrilateral. The height by averaging the quadrilateral
heights.
An aspect ratio correction may be applied, if the image does not look correct, but
here it was not necessary.

CP
PC

4

3.1 Calculation of the Aspect Ratio

We assume a very general synthetical camera without lens distortions. The
image plane can be tilted relative to the optical axis. It is allowed that the scales
in both directions are different. The image can be sheared. Altogether, besides
the perspective mapping, a general affine distortion is allowed.
The camera is located somewhere in the object space and is arbitrarily rotated.
Object coordinates are x=(x,y,z)T. Image coordinates are f = (f,h)T.

The general perspective mapping is performed by these equations:

 ao + aTx
 f =
 � + cTx

 bo + bTx
 h =
 � + cTx

We have �� unknowns ao, bo, a = (ax, ay, az)
T, b = (bx, by, bz)

T, c = (cx, cy, cz)
T

The vector c is generally orthogonal to the image plane. For an ideal camera without
affine distortions, the lenghts of a and b are equal and a and b are orthogonal to
each other. This can be proved mathematically and it explains why we need only
7 informations to recover the relevant information for a camera identification: 3
positions , 3 angles, � scale factor. The knowledge of the focal length is totally
useless, by the way.

The special case (previous page) results in the simplification ao=0, bo= 0 .

 aTx
 f =
 � + cTx

 bTx
 h =
 � + cTx

The plane aTx =0 delivers f=0. The plane bTx=0 delivers h=0. f and h are
orthogonal, therefore, a and b are orthogonal. �+cTx=0 is a plane parallel to the
image plane through the center of projection. c is orthogonal to the image plane,
in view line direction.

5

3.2 Calculation of the Aspect Ratio

Because we are not interested in the general task of photogrammetry (calculate
object points by image points), we choose an arbitrary object coordinate system
x,y,z as shown in the drawing.

The rectangle is described by two unknown base vectors u and v. Then we have
four corners:

 x� = +u + v
 x2 = - u + v
 x3 = - u - v
 x4 = +u - v

Especially we choose a=(�, 0, 0)T and b=(0, 0, �)T because the scalefactor is
already included in u and v .
Because of the orthogonality we have c=(0, cy, 0)T with unknown cy .

Multiplying the equations for f and h by the denominator and rearranging, we
get this set of nonlinear equations for the 7 unknowns ux, uy, uz, vx, vy, vz, cy:

(�) fu� = ux + vx - f� (� + cy(uy+vy)) = 0
(2) fu2 = - ux + vx - f2 (� + cy(-uy+vy)) = 0
(3) fu3 = - ux - vx - f3 (� + cy(-uy- vy)) = 0
(4) fu4 = ux - vx - f4 (� + cy(uy - vy)) = 0

(5) fu5 = uz + vz - h� (� + cy(uy+vy)) = 0
(6) fu6 = - uz + vz - h2 (� + cy(-uy+vy)) = 0
(7) fu7 = - uz - vz - h3 (� + cy(-uy- vy)) = 0
(8) fu8 = uz - vz - h4 (� + cy(uy - vy)) = 0

u and v are orthogonal:

(9) fu9 = uxvx + uyvy + uzvz = 0

Obviously we have 9 equations for 7 unknowns. Because we solve the system by
the method of Steepest Descent (gradient downhill) we can take all equations.
For Newton-Raphson-Jacobi we can omit (4) and (8), because the equations
contain redundant information. But this was not tested.
After solving the equations numerically, the aspect ratio λ is found by

(�0) λ = length(v) / length(u) = Sqrt ((vx

2 + vy
2 + vz

2) / (ux
2 + uy

2 + uz
2)

6

4.1 Test Results for the Calculation

This image shows the test situation approximately:
Object plane 500 x 500 units
Camera Position x = -2000, y = -2000, z = +2000 units
The view point is at the origin of the cyan object coordinate system.
The small image top right shows the view through the camera.

Best view zoom �00%.

Function ErrorFun (n: Integer; pn: Array Of Double):
 Double;
{ Sum of squared equation errors
 Global f1,f2,f3,f4; ux,uy,uz,vx,vy,vz,cy }
Var fu1,fu2,fu3,fu4,fu5,fu6,fu7,fu8,fu9,er: Double;
Begin
ux:=pn[1]; uy:=pn[2]; uz:=pn[3];
vx:=pn[4]; vy:=pn[5]; vz:=pn[6];
cy:=pn[7];
fu1 :=+ux+vx-f1.f*(1+cy*(+uy+vy));
fu2 :=-ux+vx-f2.f*(1+cy*(-uy+vy));
fu3 :=-ux-vx-f3.f*(1+cy*(-uy-vy));
fu4 :=+ux-vx-f4.f*(1+cy*(+uy-vy));
fu5 :=+uz+vz-f1.h*(1+cy*(+uy+vy));
fu6 :=-uz+vz-f2.h*(1+cy*(-uy+vy));
fu7 :=-uz-vz-f3.h*(1+cy*(-uy-vy));
fu8 :=+uz-vz-f4.h*(1+cy*(+uy-vy));
fu9 := ux*vx+uy*vy+uz*vz;
Errorfun:= Sqr(fu1)+Sqr(fu2)+Sqr(fu3)+Sqr(fu4)+
 Sqr(fu5)+Sqr(fu6)+Sqr(fu7)+Sqr(fu8)+Sqr(fu9);
End;

7

This image shows the test result:
The aspect ratio is correctly identified after 354 iterations for ultimate
accuracy. In fact much less iterations are necessary for practical accuracy.
It takes anyway only about 0.� seconds on a 400 MHz PC.

The calculation is based on floating point image data. If the source plane is
not a square but a rectangle then the aspect ratio is calculated correctly as
well. The accuracy for the aspect ratio is about �% if we use pixel data. The
object rectangle has the edge lenght 500 pixels. The accuracy deteriorates
if the green image quadrilateral is considerably smaller.

Now we encounter a very odd problem: for camera positions where one
vanishing point is at infinity (e.g. horizontal or vertical parallel edges), the
calculation delivers wrong results.
But if we add the additional equation error fu�0 =�-λ, using the true aspect
ratio � and the actually calculated value λ , then the total squared equa-
tion error sum is zero - the equations are correct but the solution is not
unique.

Final result: the aspect ration can be calculated, if the view line differs in
both directions from the object rectangle normal. In other cases the result
is ambiguous.
On the next page it is shown that projections with only one tilt angle can
be generated by rectangles with different aspect ratios.

4.2 Test Results for the Calculation

Object (any size)

Image

P

8

5. One tilt angle

On the next pages are some procedures for perspective rectification, so
far without further explanations, as used for the example on page 2.
The algorithm handles additionally translations, rotations, scaling and
mirroring.
The aspect ratio is calculated by averaging image edge lengths.
Especially the counterclockwise sorting of the four corners is essential.

Now we show, that for a single tilt angle several object rectangles can
produce the same image.
The red square is the original rectangle, a line in both figures. The view
line points from the center of projection to the center of the rectangle and
the green image plane is orthogonal to the view line.
Now we move the center of projection along the view line. The blue rect-
angle is constructed by a rotation about the fictitious joint. The width (height
in the lower figure) is the same as before. The rotation angle is found by
the intersection of two rays through the upper image corners. Obviously
the blue rectangle is not a square.

Original object
rectangle

Original object
rectangle

Image

Alternative object
rectangle

Alternative object
rectangle

Original Center
of Projection

Alternative Center
of Projection

Fictitious joint

Side View

Top View

Viewline

Viewline

Image

9

6.1 Procedures for Perspective Mapping

Here are some auxiliary procedures for Perspective Rectification,
so far without further explanations. No automatic Aspect Ratio !

Procedure Sort(Var x0,y0,x1,y1,x2,y2,x3,y3: Integer;
 Var N03: Array Of Integer);
 { Sort x0...x3 counterclockwise
 x1 x0
 x2 x3 }
 Var da,alf0,alf1,alf2,alf3: Single;
 xm,ym,dx,dy,flag,dn : Integer;
 Begin
 xm:=(x0+x1+x2+x3) Div 4; { preliminary center, mean value }
 ym:=(y0+y1+y2+y3) Div 4;
 x0:=x0-xm; x1:=x1-xm; x2:=x2-xm; x3:=x3-xm;
 y0:=y0-ym; y1:=y1-ym; y2:=y2-ym; y3:=y3-ym;
 Atangens(-y0,x0,alf0,flag); If alf0<0 Then alf0:=alf0+2*pi;
 Atangens(-y1,x1,alf1,flag); If alf1<0 Then alf1:=alf1+2*pi;
 Atangens(-y2,x2,alf2,flag); If alf2<0 Then alf2:=alf2+2*pi;
 Atangens(-y3,x3,alf3,flag); If alf3<0 Then alf3:=alf3+2*pi;
 { N03[0]: new number point 0
 N03[1]: new number point 1
 N03[2]: new number point 2
 N03[3]: new number point 3 }
 N03[0]:=0; N03[1]:=1; N03[2]:=2; N03[3]:=3;
 If alf0>alf1 Then
 Begin
 da :=alf0; dx:=x0; dy:=y0;
 alf0:=alf1; x0:=x1; y0:=y1;
 alf1:=da; x1:=dx; y1:=dy;
 dn:=N03[0]; N03[0]:=N03[1]; N03[1]:=dn;
 End;
 If alf0>alf2 Then
 Begin
 da :=alf0; dx:=x0; dy:=y0;
 alf0:=alf2; x0:=x2; y0:=y2;
 alf2:=da; x2:=dx; y2:=dy;
 dn:=N03[0]; N03[0]:=N03[2]; N03[2]:=dn;
 End;
 If alf0>alf3 Then
 Begin
 da :=alf0; dx:=x0; dy:=y0;
 alf0:=alf3; x0:=x3; y0:=y3;
 alf3:=da; x3:=dx; y3:=dy;
 dn:=N03[0]; N03[0]:=N03[3]; N03[3]:=dn;
 End;
 If alf1>alf2 Then
 Begin
 da :=alf1; dx:=x1; dy:=y1;
 alf1:=alf2; x1:=x2; y1:=y2;

�0

 alf2:=da; x2:=dx; y2:=dy;
 dn:=N03[1]; N03[1]:=N03[2]; N03[2]:=dn;
 End;
 If alf1>alf3 Then
 Begin
 da :=alf1; dx:=x1; dy:=y1;
 alf1:=alf3; x1:=x3; y1:=y3;
 alf3:=da; x3:=dx; y3:=dy;
 dn:=N03[1]; N03[1]:=N03[3]; N03[3]:=dn;
 End;
 If alf2>alf3 Then
 Begin
 da :=alf2; dx:=x2; dy:=y2;
 alf2:=alf3; x2:=x3; y2:=y3;
 alf3:=da; x3:=dx; y3:=dy;
 dn:=N03[2]; N03[2]:=N03[3]; N03[3]:=dn;
 End;
 x0:=x0+xm; x1:=x1+xm; x2:=x2+xm; x3:=x3+xm;
 y0:=y0+ym; y1:=y1+ym; y2:=y2+ym; y3:=y3+ym;
End;

Procedure Collin (xof,yof: Integer; scx,scy,ang,mir: Single;
 x0,y0,x1,y1,x2,y2,x3,y3: Integer; Var p8: BN);
{ Collinear Coefficients for Perspective Rectification
 Destination points defined in X1 = Screen
 Source points defined in X8 = FMem }
Var i,j,flag
: Integer;
 sx0,sy0,sx1,sy1,sx2,sy2,sx3,sy3 : Extended;
 rx0,ry0,rx1,ry1,rx2,ry2,rx3,ry3,lam,det : Extended;
 x10,x31,x20,y10,y31,y20,xc,yc,a,b : Extended;
 sx,sy,cp,sp,gx,gy,fx,fy : Single;
 N03 Array[0..3] Of Integer;
 B8: BN; A88: ANN; { Arrays for linear equations }
 Procedure Transf (Var x,y: Extended);
 Var xs,ys: Single;
 Begin
 xs:=sx*(x-gx-xof);
 ys:=sy*(y-gy-yof);
 x:= cp*xs+sp*ys+fx;
 y:=-sp*xs+cp*ys+fy;
 End;
Begin
 Sort(x0,y0,x1,y1,x2,y2,x3,y3,N03);{ Sort ccw }
 sx:=mir/scx; sy:=1/scy; { mir=+1,-1 }
 SicCoc(wrad*mir*ang,sp,cp); { Fast sine, cosine }
 gx:=xpx /2; { Center of Screen }
 gy:=ypx /2;
 fx:=mxpix/2; { Center of Image in FMem }
 fy:=mypix/2;

6.2 Procedures for Perspective Mapping

��

 sx1:=x1; sy1:=y1;
 sx2:=x2; sy2:=y2;
 sx3:=x3; sy3:=y3;
 a :=(sx0-sx1+sx3-sx2)/4; { Half edge length in X1 }
 b :=(sy3-sy0+sy2-sy1)/4; { mean values of two opposite edges}
{ Center of Squares in X1 }
 x10:=sx1-sx0; x31:=sx3-sx1; x20:=sx2-sx0;
 y10:=sy1-sy0; y31:=sy3-sy1; y20:=sy2-sy0;
 lam:=x10*y31-y10*x31;
 det:=x20*y31-y20*x31;
 lam:=lam/det;
 xc :=sx0+lam*x20;
 yc :=sy0+lam*y20;
{ Distorted Square in X8 }
 Transf(sx0,sy0);Transf(sx1,sy1);Transf(sx2,sy2);Transf(sx3,sy3);
{ Undistorted Square in X1 }
 rx0:=xc+a; ry0:=yc-b;
 rx1:=xc-a; ry1:=yc-b;
 rx2:=xc-a; ry2:=yc+b;
 rx3:=xc+a; ry3:=yc+b;
{ Undistorted Square in X8 }
 Transf(rx0,ry0);Transf(rx1,ry1);Transf(rx2,ry2);Transf(rx3,ry3);
{ Collinear Parameters }
 For i:=1 to 8 Do For j:=1 to 8 Do A88[i,j]:=0.0;
 A88[1,1]:=rx0; A88[1,2]:=ry0; A88[1,3]:=1.0;
 A88[2,1]:=rx1; A88[2,2]:=ry1; A88[2,3]:=1.0;
 A88[3,1]:=rx2; A88[3,2]:=ry2; A88[3,3]:=1.0;
 A88[4,1]:=rx3; A88[4,2]:=ry3; A88[4,3]:=1.0;
 A88[5,4]:=rx0; A88[5,5]:=ry0; A88[5,6]:=1.0;
 A88[6,4]:=rx1; A88[6,5]:=ry1; A88[6,6]:=1.0;
 A88[7,4]:=rx2; A88[7,5]:=ry2; A88[7,6]:=1.0;
 A88[8,4]:=rx3; A88[8,5]:=ry3; A88[8,6]:=1.0;
 A88[1,7]:=-sx0*rx0; A88[1,8]:=-sx0*ry0;
 A88[2,7]:=-sx1*rx1; A88[2,8]:=-sx1*ry1;
 A88[3,7]:=-sx2*rx2; A88[3,8]:=-sx2*ry2;
 A88[4,7]:=-sx3*rx3; A88[4,8]:=-sx3*ry3;
 A88[5,7]:=-sy0*rx0; A88[5,8]:=-sy0*ry0;
 A88[6,7]:=-sy1*rx1; A88[6,8]:=-sy1*ry1;
 A88[7,7]:=-sy2*rx2; A88[7,8]:=-sy2*ry2;
 A88[8,7]:=-sy3*rx3; A88[8,8]:=-sy3*ry3;
 B8[1]:=sx0; B8[2]:=sx1; B8[3]:=sx2; B8[4]:=sx3;
 B8[5]:=sy0; B8[6]:=sy1; B8[7]:=sy2; B8[8]:=sy3;
{ Solve Equations A88*p8=B8 }
 HoGaussP(8,A88,p8,B8,det,flag);
End;

6.3 Procedures for Perspective Mapping

Gernot Hoffmann,
January 04 / 200� — February �� / 20�3

Website
 Load browser / Click here

http://docs-hoffmann.de/

