
�

Gernot Hoffmann
 Dithering + Halftoning

Hilbert-Peano
Floyd-Steinberg

Raster Halftoning
References

Fl
oy

d-
St

ei
nb

er
g

Please use 72dpi and zoom 100%

�

	�.	 Dithering	by	Hilbert-Peano	 3
	�.	 Dithering	by	Floyd-Steinberg	 5
	3.	 Raster	Halftoning	 8
	4.	 Code	Floyd-Steinberg	 ��
	5.	 Code	Raster	Halftoning	 �4
	6.	 References		 �6

Contents

Zoom	�00%	or	�00%

Settings	for	Acrobat
Edit	/	Preferences	/	General	/	Page	Display	(since	version	6)	
Custom	Resolution	7�	dpi
See	remark	on	last	page!

Edit	/	Preferences	/	General	/	Color	Management	(full	version	only)
sRGB
EuroscaleCoated	or	ISOCoated	or	SWOP
GrayGamma	�.�

3

1. 1 Dithering by Hilbert-Peano
Based	on	an	 idea	of	Peano,	David	Hilbert	had	published	�89�	 the	mathematical		
description	of	a	function,	which	maps	all	points	of	a	plane	to	the	points	of	a	line.
This	curve	has	some	features	which	are	very	helpful	for	dithering	images:
-	The	curve	walks	always	in	her	own	vicinity
-	The	curve	hits	all	points	(dithering	dots)	in	the	plane	exactly	once
-	The	curve	seems	to	walk	on	a	random	path
Along	the	path	all	color	values,	e.g.	cyan,	are	accumulated.	If	the	sum	is	greater	than	
�55,	a	cyan	point	is	printed	and	in	the	accumulator	�55	is	subtracted.	This	is	a	bilevel	
printing:	cyan	or	nothing.	Multilevel	printing	with	different	dotsizes	is	possible	as	well.
The	curve	can	be	programmed	by	powers	of	�.	Here	we	have	the	width	�56.

H
ilb

er
t-

Pe
an

o

3

4

For	correct	pixel	view	download	and	use	Acrobat	Reader	Zoom	�00%	or	�00%

This	page	shows	an	original	Grayscale	Image	and	Hilbert-Peano	Dithering	with	one,	
two	and	four	gray	levels.
This	is	a	screen	simulation.	Instead	of	small	printer	dots	we	have	large	pixels.
Image	Processing	by	ZEBRA.			

1.2 Dithering by Hilbert-Peano

Original	 White	plus	�	gray	level

White	plus	�	gray	levels White	plus	4	gray	levels

5

White	plus	�	gray	level

White	plus	�	gray	levels White	plus	4	gray	levels

2.1 Dithering by Floyd-Steinberg

This	page	shows	an	original	Grayscale	Image	and	Floyd-Steinberg	Dithering	with	
one,	two	and	four	gray	levels.
This	is	a	screen	simulation.	Instead	of	small	printer	dots	we	have	large	pixels.
Image	Processing	by	ZEBRA.			

For	correct	pixel	view	download	and	use	Acrobat	Reader	Zoom	�00%	or	�00%

Original	(like	previous	page)

6

2.2 Dithering by Floyd-Steinberg

The	Floyd-Steinberg	algorithm	was	programmed	as	recommended	in	[3]	with	alter-
nating	directions	for	even	and	odd	rows.	This	is	the	error	weighting	scheme	for	left	
to	right	dithering	in	even	rows:

		y=0					x=0																																																																																															xmx
				y									x					7/�6																										x						7/�6																																														x
												5/�6			�/�6														3/�6			5/�6			�/�6																																		3/�6			5/�6
		ymx

Bilevel	Dithering:	here	each	destination	color	C=R,G,B	is	either	0	or	�55.
Hilbert-Peano	(page	3)	delivers	generally	 less	sharp	 results,	compared	 to	Floyd-
Steinberg	(page	�,	cover).	Artifacts	may	result	in	synthetical	images	in	uniform	or	
shaded	areas,	but	nearly	never	in	photos.	The	Hilbert-Peano	algorithm	is	based	on	
[�]	and	[�].		

Floyd-Steinberg	creates	also	artifacts	in	synthetical	images.	Sometimes	it	is	helpful	
to	dither	first	trilevel	and	then	bilevel.

For	monitor	simulations	of	bilevel	dithering	it	is	generally	necessary	to	cancel	the	
working	space	gamma	to	some	extent.	Recalculate	all	source	colors	C=R,G,B	by	
C=CG.	Gamma	is	not	necessarily	�.�.	Sometimes	it	is	better	to	use	�.6.

If	images	with	bilevel	dithering	or	halftoning	are	converted	to	smooth	images	by	blur-
ring	filters	then	it	is	necessary	to	apply	an	inverse	gamma	correction	by	C=C�/�.�	for	
�.�	working	spaces.	This	has	nothing	to	do	with	the	gamma	correction	in	advance	
to	the	dithering	or	halftoning.

7

2.3 Dithering by Floyd-Steinberg

The	Floyd-Steinberg	algorithm	can	be	used	for	color	quantization.

Left:	original	image.

Right:	three	levels	for	each	channel	R,G,B	.	

	

For	correct	pixel	view	download	and	use	Acrobat	Reader	zoom	�00%
	

8

3.1 Raster Halftoning

This	is	a	tutorial	demonstration	of	raster	halftoning.	It	is	used	for	offset	or	laser	prin-
ting,	either	for	gray	images	or	for	each	color	channel	separately.
Each	 raster	cell	 contains	one	spot.	A	spot	consists	of	printable	dots	with	device	
	resolution.	We	don´t	call	these	dots	pixels.	Raster	cells	are	arranged	in	Lpi	distance,	
dots	in	dpi	distance.	A	square	raster	cell	with	n	dots	in	one	direction	can	reproduce	
m=n�	levels	plus	white.
The	image	is	virtually	placed	on	the	paper.	A	frame	with	raster	cell	width	is	placed	
on	the	paper.	For	each	device	dot	the	underlying	source	image	pixel	value	is	taken	
and	compared	with	a	spot	function.	
In	a	previous	version	of	this	doc	it	was	assumed	that	the	gray	values	in	the	frames	
are	averaged.	This	assumption	was	wrong.

We	are	starting	with	a	simplified	explanation:	
The	gray	in	a	uniform	area	defines	the	height	
for	 the	 spot	 function.	 Everything	 inside	 the	
height	contour	has	to	be	filled	by	black.
Light	gray	would	deliver	a	nearly	round	spot.	
50%	gray	a	square	spot	and	dark	gray	four	white	
quarter	circles	at	the	corners	which	appear	as	
round	white	spots	on	the	printed	paper.	Black	
and	 white	 dots	 are	 complementary	 to	 each	
other	with	respect	to	medium	gray	50%.

Actually	it	works	differently.	Quoted	by	[4],	where	we	have	replaced	’pixel’	by	’dot’:	
’The	values	the	spot	function	returns	are	not	significant.	All	that	matters	is	the	relative	
spot	function	values	for	different	dots.	A	cell´s	gray	value	varies	from	black	to	white,	
the	first	dot	whitened	is	the	one	whose	spot	function	has	the	lowest	value,	the	next	
pixel	is	the	one	with	the	next	higher	spot	function	value,	and	so	on.	If	two	dots	have	
the	same	spot	function	value,	setscreen	chooses	their	relative	order	arbitrarily.’	

One	may	 think	 that	each	cell	has	one	gray.	As	already	mentioned	 this	 is	wrong.	
Nothing	is	averaged	-	the	underlying	image	pixels	are	directly	used,	which	preserves	
sharp	image	elements	but	may	cause	fragments	of	spots.	
The	spot	function	can	have	any	shape	and	height,	it	is	by	no	means	necessary	to	
normalize	the	function,	let	us	say	for	height	one.	Of	course	the	spot	function	is	defined	
for	one	raster	cell.	

The	mechanism	becomes	better	understandable	by	 the	 introduction	of	 threshold	
arrays.

9

3.2 Raster Halftoning

The	image	(right)		shows	a	threshold	array	for	
n=6.	A	dot	is	drawn	black	if	the	generating	pi-
xel	delivers	a	gray	value	below	the	threshold.
The	threshold	arrays	are	here	created	by	spot	
functions.	A	float	increment	is	calculated	by	
dg=�/m	with	m=n�.	The	first	decision	level	is	
�-dg/�.		The	other	 levels	are	generated	by	
decrementing.	The	 lowest	decision	 level	 is	
dg/�.	The	 levels	are	multiplied	by	�55	and			
rounded.

The	threshold	array	is	filled	by	zeros.The	raster	cell	is	scanned	on	a	spiral	contour	
which	starts	in	the	center	for	odd	n	or	with	a	half	step	offset	left	and	up	for	even	n.
This	is	the	strategy:	find	all	values	of	the	spot	function	which	are	not	yet	used	and	
which	are	not	larger	than	the	previous	value.	Then	find	the	maximum	of	these.	This	
delivers	a	new	entry	for	the	array.	Decrement	the	level.	Execute	the	scan	m	times.

For	n=�6	the	lowest	threshold	would	be	zero.	This	has	to	be	replaced	by	�,	because	
dots	are	drawn	black	if	the	gray	value	is	below	the	level.

	

The	image	shows	the	rasterization	for	n=�6	in	a	synthetical	graphic

Screens	with	non-zero	angle	are	created	by	a	brute	force	method:	rotate	the	image,	
rasterize	the	whole	area	and	rotate	back	using	nearest	neighbour	’interpolation’.	
This	works	reasonably	for	45°	and	for	larger	n.	Better	methods	can	be	found	in	[5].

In	the	example	we	have	n=�6	dots	per	cell	width.	The	fuzzyness	of	the	spots	could	
be	reduced	by	blurring	the	source	image	a	little.	This	holds	true	mainly	for	photos.

�0

3.3 Raster Halftoning Example

n =6,	36	levels,	angle	0°
Use	zoom	�00%

��

3.4 Raster Halftoning Example

n =�6,	�56	levels,	angle	45°
Use	zoom	�00%

��

4.1 Code Floyd-Steinberg

Procedure IFloyd(ncol: Integer);
{ Copyright Gernot Hoffmann; November 20, 2001
 ncol: Color levels: white + 1,2,4,8,16,32,64,128
 Floyd-Steinberg
 Source FImage; Destination FImage; works inplace
 Uses global FImage=FMem[y]^[x]; packed prgb=pb/rb/gb/bb
 gmx : for x=0..gmx Pixels, gmx<=1279
 gmy : for y=0..gmy Pixels
 This is an edited program text. Errors cannot be excluded }

Var	 x,y,i,j,xa,ya,xe,ye,flap	 	:	 Integer;
 pb : Byte;
 ri,gi,bi,er,k1,k2,k3,c1,c2: Word;
 q,z,gam : Single;
 r1,r2,g1,g2,b1,b2 : Array[-1..1280] Of Word;
 tabr,tabg,tabb : Array[0.. 255] Of Byte;
Begin
xa:=0; ya:=0; xe:=gmx; ye:=gmy;
gam:=1.0;
Case ncol Of
 1: gam:=1.60;
 2: gam:=1.15;
End; { case }
For i:=0 to 255 Do
Begin q:=i/255;
XPowerA(q,gam,z					,flap);				Tabr[i]:=Round(255*z);
XPowerA(q,gam+0.05,z,flap);	 Tabg[i]:=Round(255*z);
XPowerA(q,gam,z					,flap);			 Tabb[i]:=Round(255*z);
End;
Case ncol Of
1: Begin c1:=256; c2:=8; End; { 1 color }
2: Begin c1:=128; c2:=7; End; { 2 colors }
3: Begin c1:= 64; c2:=6; End; { 4 colors }
4: Begin c1:= 32; c2:=5; End; { 8 colors }
5: Begin c1:= 16; c2:=4; End; { 16 colors }
6: Begin c1:= 8; c2:=3; End; { 32 colors }
7: Begin c1:= 4; c2:=2; End; { 64 colors }
8: Begin c1:= 2; c2:=1; End; {128 colors }
End;
For x:=xa to xe Do
Begin r1[x]:=0; r2[x]:=0; g1[x]:=0; g2[x]:=0; b1[x]:=0; b2[x]:=0;
End;
y:=ya;
Repeat
 For x:=xa to xe Do
 Begin
 GetFixel(x,y,pb,ri,gi,bi);

 er:=r1[x]+Tabr[ri];
	 ri:=(er	Div	c1)*c1;
 If ri>255 Then ri:=255;
 er:=er-ri;
	 k1:=(7*er)Div	16;
			 k2:=(3*er)Div	16;
					k3:=(5*er)Div	16;
 r1[x+1]:=r1[x+1]+k1;
 r2[x-1]:=r2[x-1]+k2;
 r2[x]:=r2[x]+k3;
 r2[x+1]:=r2[x+1]+er-k1-k2-k3;

 SetFixel(x,y,pb,ri,gi,bi);
 End;
 For i:=xa to xe Do
 Begin
 r1[i]:=r2[i]; g1[i]:=g2[i]; b1[i]:=b2[i]; r2[i]:=0; g2[i]:=0; b2[i]:=0;
 End;

 er:=g1[x]+Tabg[gi];
						 gi:=(er	Div	c1)*c1;
 If gi>255 Then gi:=255;
 er:=er-gi;
						 k1:=(7*er)Div	16;
						 k2:=(3*er)Div	16;
						 k3:=(5*er)Div	16;
 g1[x+1]:=g1[x+1]+k1;
 g2[x-1]:=g2[x-1]+k2;
 g2[x]:=g2[x]+k3;
 g2[x+1]:=g2[x+1]+er-k1-k2-k3;

 er:=b1[x]+Tabb[bi];
				 bi:=(er	Div	c1)*c1;	
 If bi>255 Then bi:=255;
 er:=er-bi;
				 k1:=(7*er)Div	16;
				 k2:=(3*er)Div	16;
				 k3:=(5*er)Div	16;
 b1[x+1]:=b1[x+1]+k1;
 b2[x-1]:=b2[x-1]+k2;
 b2[x]:=b2[x]+k3;
 b2[x+1]:=b2[x+1]+er-k1-k2-k3;

�3

4.2 Code Floyd-Steinberg

 Inc(y); If y>ye Then Exit;

 For x:=xe DownTo xa Do
 Begin
 GetFixel(x,y,pb,ri,gi,bi);

 er:=r1[x]+Tabr[ri];
				 ri:=(er	Div	c1)*c1;
 If ri>255 Then ri:=255;
 er:=er-ri;
				 k1:=(7*er)Div	16;
			 k2:=(3*er)Div	16;
		 k3:=(5*er)Div	16;
 r1[x-1]:=r1[x-1]+k1;
 r2[x+1]:=r2[x+1]+k2;
 r2[x]:=r2[x]+k3;
 r2[x-1]:=r2[x-1]+er-k1-k2-k3;

 SetFixel(x,y,pb,ri,gi,bi);
 End;
 For i:=xa to xe Do
 Begin
 r1[i]:=r2[i]; g1[i]:=g2[i]; b1[i]:=b2[i]; r2[i]:=0; g2[i]:=0; b2[i]:=0;
 End;
 Inc(y);
 Until y>ye;
End; { IFloyd }

 er:=g1[x]+Tabg[gi];
				 gi:=(er	Div	c1)*c1;
 If gi>255 Then gi:=255;
 er:=er-gi;
					k1:=(7*er)Div	16;
					k2:=(3*er)Div	16;
			 k3:=(5*er)Div	16;
 g1[x-1]:=g1[x-1]+k1;
 g2[x+1]:=g2[x+1]+k2;
 g2[x]:=g2[x]+k3;
 g2[x-1]:=g2[x-1]+er-k1-k2-k3;

 er:=b1[x]+Tabb[bi];
			 bi:=(er	Div	c1)*c1;
 If bi>255 Then bi:=255;
 er:=er-bi;
				 k1:=(7*er)Div	16;
			 k2:=(3*er)Div	16;
			 k3:=(5*er)Div	16;
 b1[x-1]:=b1[x-1]+k1;
 b2[x+1]:=b2[x+1]+k2;
 b2[x]:=b2[x]+k3;
 b2[x-1]:=b2[x-1]+er-k1-k2-k3;

�4

5.1 Code Raster Halftoning

These Procedures are not intended to be copied because the underlying graphics library is
not available in Borland Pascal.

Procedure ISpotT(rwid,dot,alf,tmat: Integer; gam: Single);
{ G.Hoffmann
 January 07, 2004
 Convert Color to Black on White
		Rasterize	by	Threshold	Matrix
 FMem Works inplace in global framebuffer FMem
 rwid Width of halftone cell in pixels, 2..16
		dot=1		Round
 dot=2 Square ... }
Var x,y,i,j,k,p,m0,m1,mq,si,sj : Integer;
 xa1,ya1,xe1,ye1,xm1,ym1,xi,yj : Integer;
					flag,n,kmax																			:	Integer;
 xa4,ya4,xe4,ye4 : Integer;
 pp,mm,so,sn,sm,gry,dgr,x1,y1 : Single;
 prgb,pbbb,pwww : LongInt;
 pb,rb,gb,bb : Byte;
 Pout : Boolean;
 txt1,txt2 : String;
 Tab : Array [0..255] Of Byte;
 Thr : Array [0..15,0..15] Of Byte;
 Procedure Dots;
 Begin
 If Not Pout And (Thr[i,j]=0) Then
 Begin
 { Function has maximum in center of raster cell
 or at the edges of the raster cell }
 Case dot Of
								 	 1:	sn:=		coc(pp*i-pi)+0.90*coc(pp*j-pi);	{	Dot,	coc=Cosine	}
								 	 2:	sn:=-(Abs(i-mm)+0.90*Abs(j-mm));						{	Square	}
								 	 3:	sn:=	-Abs(j-mm)-0.15*Abs(i-mm);							{	x-Line	}
								 	 4:	sn:=	-Abs(i-mm)-0.15*Abs(j-mm);							{	y-Line	}
								 	 5:	sn:=-(Sqr(i-mm)+0.90*Sqr(j-mm));						{	Circle	}
 End; { Case}
 If sn<=so Then
 Begin
 If sn>sm Then
 Begin
 si:=i; sj:=j; sm:=sn;
 End;
 End;
 End;
 End;
Begin
{ Gamma correction gam=1.4..2.2 for 2.3 working space }
For i:=0 to 255 Do
Begin	XPowerA(i/255,gam,gry,flag);	Tab[i]:=Round(255*gry);
End;
{	Define	white	and	black	in	4-byte	coding	}
pwww:=255 SHL 16 + 255 SHL 8 +255; { white 0 255 255 255 }
pbbb:= 1; { black 1 0 0 0 }
If rwid< 2 Then rwid:= 2;
If rwid>16 Then rwid:=16;
m0:=rwid-1;
m1:=rwid; { width of cell }
mq:=Sqr(m1); { number of levels, without white }
kmax:=mq;
mm:=0.5*m0;										{	center,	zero	based														}
dgr:=1/mq; { Increment in range 0..1 }
pp:=pi*2/m0;
pwww:=255 SHL 16 + 255 SHL 8 +255; { white }
pbbb:= 1 SHL 24; { black }
{ Build threshold array }
For j:=0 to m0 Do
For i:=0 to m0 Do Thr[i,j]:=0;

�5

so:=+1E6;
gry:=1-dgr/2;
For k:=1 to kmax Do
Begin
{ Spiral scan }
sm:=-1E6;
pout:=False;
If odd(m1) Then i:=m0 Div 2 Else i:=m1 Div 2 -1;
j:=i; Dots;
n:=1;
	Repeat
 For p:=1 to n Do Begin Inc(i); If i>m0 Then Pout:=True; Dots; End;
 For p:=1 to n Do Begin Inc(j); Dots; End;
 Inc(n);
 For p:=1 to n Do Begin Dec(i); If i<0 Then Pout:=True; Dots; End;
 For p:=1 to n Do Begin Dec(j); Dots; End;
 Inc(n);
 Until Pout Or (n>m1);
	Thr[si,sj]:=Round(255*gry);
 If Thr[si,sj]=0 Then Thr[si,sj]:=1;
 so:=sm;
 gry:=gry-dgr;
End;
{ Find actual image size in frame buffer }
FrameLim (‘F’,xa1,ya1,xe1,ye1,xm1,ym1);
{ Gray Copy
 1=1/3 weight; 2=NTSC; 3=PhS }
FMemGrYIQ (xa1,ya1,xe1,ye1,xa1,ya1,2);
ImiToScr; { Copy frame buffer to screen }
{	Rotate	image	in	frame	buffer.	Procedure is not in document }
RolTranP	(+1,alf,rwid,xa1,ya1,xe1,ye1,xa4,ya4,xe4,ye4);
{	Rasterize	}
y:=ya4;
Repeat
 x:=xa4;
	Repeat
 For j:=0 to m0 Do
 Begin
 yj:=y+j;
 For i:=0 to m0 Do
 Begin
 xi:=x+i;
 { Use blue channel of gray image via gamma table }
 bb:=FMem[yj]^[xi] AND $000000FF;
 If Tab[bb]<Thr[i,j] Then FMem[yj]^[xi]:=pbbb
 Else FMem[yj]^[xi]:=pwww;
 End;
 End;
 x:=x+m1;
 Until x>xe4;
y:=y+m1;
Until y>ye4;
If (xa1<>0) Or (xe1<>gmx) Or (ya1<>0) Or (ye1<>gmy) Then
ColToImi(frab,whit); { Fill total area by white }
{	Rotate	frame	buffer	back	}
RolTranP(-1,alf,rwid,xa1,ya1,xe1,ye1,xa4,ya4,xe4,ye4);
End;

5.2 Code Raster Halftoning

�6

[�]	 Tesuo	Asano
	 Digital	Halftoning	Algorithm	based	on	Random	Space	Filling	Curve
	 IEEE	Int.	Conf.	on	Image	Proc.,	Lausanne	�996,	Vol.�	p.545-548

[�]	 Sei-ichiro	Kamata
	 An	Address	Generator	of	an	N-dimensional	Hilbert	Scan
	 IEEE	Int.	Conf.	on	Image	Proc.,	Lausanne	�996,	Vol.�	p.�03�-�034	

[3]	 J.D.Foley+A.vanDam+St.K.Feiner+J.F.Hughes
	 Computer	Graphics
	 Addison-Wesley	Publishing	Company,	Reading,	Massachusetts	...,	�993	

[4]	 PostScript	Language	Reference	Manual
	 Addison-Wesley	Publishing	Company,	Reading,	Massachusetts	...,	�998	

[5]	 Henry	R.Kang
	 Color	Technology	for	Electronic	Imaging	Devices
	 SPIE	Optical	Engineering	Press,	Bellingham,	Washington	USA,	�997

[6]		 About	Color	Rendering
			 http://docs-hoffmann.de/colrend�90800.pdf
					 http://docs-hoffmann.de/spot�90800.pdf	

																																																																																															

6.1 References

Gernot	Hoffmann
January	0�	/	�00�	–	April	��	/	�0�9

Website
	 Load	browser	and	click	here	

Important	note:

This	is	a	pixel	synchronized	document.	The	synchronization	is	correct	for	

Acrobat 72dpi + Zoom 100% or 200%
or

Acrobat 96dpi + Zoom 75% or 150%

http://docs-hoffmann.de/colrend290800.pdf
http://docs-hoffmann.de/spot290800.pdf
http://docs-hoffmann.de/

