
�

Gernot Hoffmann

Contents
	 �.	 Introduction	 2
	 2.	 Algorithm	 3
	 3.	 Blur	Control	 3
	 4.	 Improvements	 4
	 5.	 Binary	Weighting	 5
	 6.	 Arbitrary	Filter	Scaling	 6
	 7.	 Standard	n-order	Sharpening	Filter	 7
	 8.	 General	n-order	Sharpening	Filter	 8
	 9.	 Contour	Filters	 �0
�0.		 Motion	Blur	 �2
��.		 Laplacian	Filters	 �3
�2.		 Bode	Plots	for	2D	Filters	 �7
�3.		 References	 �8

Gaussian Filters

Settings	for	Acrobat
Edit	/	Preferences	/	General	/	Page	Display	(since	version	6)	
Custom	Resolution	72	dpi
Edit	/	Preferences	/	General	/	Color	Management	(full	version)
sRGB
EuroscaleCoated	or	ISOCoated	or	SWOP
GrayGamma	2.2

Carl Friedrich

1777 - 1855
Gauß

2

1. Introduction

A	Gaussian	filter	smoothes	an	image	by	calculating	weighted	averages	in	a	filter	box.	

Coordinates	xo,yo	are	arbitrary	pixel	positions	in	a	bitmap	image.	x,y	 is	a	local	coordinate	
system,	centered	in	xo,yo,	as	shown.
The	gray	area	is	a	filter	box	with	m·m	knots.	Box	coordinates	x	and	y	reach	from	-n	to	+n.	
The	box	width	m=(2n+�)	is	assumed	odd.	

Weight	factors	are	calculated	for	a	Gaussian	bell	by	w(x,y)=e-a		with	a=(x2	+	y2)/(2r2).
The	filter	radius	r	is	in	statistics	the	standard	deviation	sigma.	
Choose	n=(2...3)r		or	r=0.465n		for	a	reasonable	reproduction	without	clipping.	
E.g.	for	x=r,	y=0		we	find	w= e-0.5=0.6065.

The	image	shows	the	function	relative	to	the	filter	box	vertically	shifted.	In	the	image	the	radius	
is	r=2.

The	algorithm	on	page	2	is	not	optimized.	The	algorithm	can	be	made	much	faster	by	binary	
weight	factors,	because	then	the	whole	calculation	is	in	Integer	and	the	multiplications	are	
merely	shifts	(as	on	page	5).

Note:
The	 image	quality	 is	optimal	only	 for	direct	view	by	Acrobat.	Browsers	are	sometimes	not	
accurate.	Please	use	Resolution	72dpi	and	Zoom	�00%.

x

y

3

General	Weight	Factors

S=0
r2=2·Sqr(r)
For y=-n to +n Do
For x=-n to +n Do
Begin
 a=(Sqr(x)+Sqr(y))/r2
 w(x,y)=exp(-a)
 S=S+w(x,y)
End

2. Algorithm

General	Image	Filtering

For yo=n to ymax-n Do
For xo=n to xmax-n Do
Begin
 newred=0
 newgrn=0
 newblu=0
 For y=-n to n Do
 For x=-n to n Do
 Begin
 newred=newred+w(x,y)·red(x+xo,y+yo)
 newgrn=newgrn+w(x,y)·grn(x+xo,y+yo)
 newblu=newblu+w(x,y)·blu(x+xo,y+yo)
 End
 newred=newred/S
 newgrn=newgrn/S
 newblu=newblu/S
End

3. Blur Control

The	blurring	is	controlled	by	two	parameters:

�)	 The	box	width,	described	by	m=(2n+�)	pixels	in	one	direction
2)	 The	radius	r

The	Gaussian	bell	in	one	direction	delivers:

x/r	 			-3	 	 			-2	 			-�	 	0	 				�	 				2	 				3
w(x)	 0.0���	 0.�353	 0.6065	 �.0	 0.6065	 0.�353	 0.0���

We	can	choose	r=0.465n.	This	results	in	a	weight	factor	0.�	at	the	outermost	pixel	at	x=n,	
which	seems	to	be	reasonable.	Less	than	0.�	does	not	make	much	sense.	For	pixels	on	the	
diagonal	corners	of	the	xy-box	the	value	is	anyway	smaller.

Weight	factors.	Weak	blur	n=�,	r=0.465.	Strong	blur	n=3,	r=�.398.

Weak	blur:	 		 	 	 0.�00	 �.0	 0.�00
	

Strong	blur:	 	0.�00	 0.358	 0.773	 �.0	 0.773	 0.358	 0.�00

4

4. Improvements

The	Gauss	formula	can	be	separated.	This	will	make	the	calculations	faster.
	
	

Another	method	uses	one	source	image,	one	array	of	the	same	size	for	the	accumulation	and	
a	sequence	of	shifted	images.	This	shifted	image	is	made	once	for	each	position	x,y	for	all	
pixels	in	the	source	image.	

The	author	prefers	the	standard	structure,	because	this	is	valid	for	any	linear	filter,	like	softening	
(blurring),	sharpening	and	contour	finding	filters,	also	for	some	effects	which	use	oscillations	
in	the	box.
A		5x5	binary	Gaussian	filter,	programmed	mainly	in	Intel	Assembly	Language,	needs	about	
one	second	for	�000x�000	pixels	(PC	400MHz).

Note:	 the	Gaussian	filter	 in	 the	straightforward	kernel	 implementation	cannot	be	executed	
inplace.	One	needs	always	a	source	framebuffer	and	a	destination	framebuffer.	

w x y e w x w y e ex y x y(,) () ()()

= = =− + − −2 2 2 2

5

0	 �	 2	 �	 0

�	 4	 8	 4	 �

2	 8							�6	 8	 2

0	 �	 2	 �	 0

�	 4	 8	 4	 �

5.1 Binary Weighting

This	filter	shows	a	crude	approximation	of	the	
Gaussian	bell	function.

The	weight	factors	are	powers	of	2,	thus	multi-
plications	by	weight	factors	can	be	replaced	by	
binary	shifting.	
The	sum	of	the	weight	factors	is	S= 80.		If		all	
colors	values	are	255,	then	the	weighted	sum	
is	20400,	which	does	not	exceed	the	positive	
number	space	for	Integer	2�5-�=32767.

Radius	r=0.85,	approximately.

For	more	general	applications	binary	weighting	by	LongInt	(32bit)	could	be	used.	This	is	still	
much	faster	than	floating	point	operations.

Part	of	a	digital	photo.		Left	not	filtered.		Right	softened	by	Binary	Weight	Filter.		Then	both	
images	were	scaled	down	for	50	%	and	placed	into	PDF	by	pixel	synchronization.

The	 synchronization	 is	 perfect	 only	 for	 direct	 view	 by	 Acrobat	 but	 not	 necessarily	 by	
browser.

5

6

Gain	transfer	function	for	Binary	Gauss	2-8-�6-8-2

5.2 Binary Weighting Transfer Function

-0	 -�	 -2	 -�	 -0

-�	 -4	 -8	 -4	 -�

-2	 -8						+64	 -8	 -2

-0	 -�	 -2	 -�	 -0

-�	 -4	 -8	 -4	 -�

6. Arbitrary Filter Scaling

If	the	weight	factors	belong	to	a	consistent	set	of	data,	
like	in	the	previously	mentioned	softening	filters,	then	
we	have	to	divide	all	raw	weight	factors	by	the	sum	
of	the	raw	weight	factors.
Not	so	for	a	general	sharpening	filter.	
We	 start	 by	 a	 positive	 peak	 in	 the	 center	 and	 all	
nega-tive	values	are	taken	from	a	Gaussian	bell.		The	
binary	weighting	is	not	essential	in	this	example.
Generally	spoken,	we	have	raw	positive	weight	fac-
tors	Pi	and	raw	negative	weight	factors	Ni.	
The	actual	filtering	is	done	by	scaled	weight	factors		
pi=2Pi	/	Sp	and	ni =Ni	/	Sn	.

The	center	peak	in	the	scaled	matrix	is	+2		and	the	other	negative	values	are	divided	by	64.

For	band-pass	and	high-pass	filters	we	use	equal	sums	and	a	contrast	factor:
pi =CPi	/	Sp	and	ni =CNi	/	Sn	.

Sp	 =		64
Sn	 =		4·8	+	4·4	+	4·2	+	8·�	=	64	

Example,	as	above:	

This	scaling	is	based	on	the	demand	that	a	uniform	color	area	should	deliver	the		same	color	
after	filtering.

Sp	 =		Sum	of	positive	weight		 factors	Pi

Sn	 =		Sum	of	negative	weight	factors	|Ni|		

7

	�	 	2	 	3	 	4	 	5

	6	 	7	 	8	 	9	 �0

��	 �2	 �3	 �4	 �5

�6	 �7	 �8	 �9	 20

2�	 22	 23	 24	 25

-0.0035	 -0.0�59	 -0.0262		 -0.0�59	 -0.0035

-0.0�59	 -0.07�2	 -0.��73	 -0.07�2	 -0.0�59

-0.0262		 -0.��73						2.0		 -0.��73		 -0.0262

-0.0�59	 -0.07�2	 -0.��73		 -0.07�2	 -0.0�59

-0.0035	 -0.0�59	 -0.0262		 -0.0�59	 -0.0035	

7. Standard n-order Sharpening Filter

The	drawing	shows	 the	numbering	and	 the	weight	 factors	 for	 the	kernel	 for	a	sharpening	
filter,	 here	 with	 n=2.	 	The	algorithm	 works	 for	 any	n ≥�.	The	 total	 number	 of	 elements	 is	
N=(2n+�)2.			

The	 center	 weight	 factor	 fs[�3]=2.0	 is	 a	 positive	 peak.	The	 other	weight	 factors	 fs[k]	 are	
calculated	by	a	negative	Gaussian	bell,	according	to	the	code	below.

The	sum	of	negative	weight	factors	is	-�.0	and	the	sum	of	all	weight	factors		is	+�,	therefore	
a	uniformly	colored	area	remains	unfiltered,	as	required.

Tutorial code, not optimized
sm:=0;
k :=1;
For j:=-n to n Do
For i:=-n to n Do
Begin
 ra:=Sqrt(Sqr(i)+Sqr(j))/n;
 ra:=exp(-2*Sqr(ra));
 fs[k]:=-ra;
 If (i<>0) Or (j<>0) Then sm:=sm+ra;
 Inc(k);
End;
k :=1;
For j:=-n to n Do
For i:=-n to n Do
Begin
 fs[k]:=fs[k]/sm;
 If (i=0) And (j=0) Then fs[k]:=2.0;
 Inc(k);
End;

8

-
+

K	–	�

K

Low-pass
filter	Fn

C D

8.1 General n-order Sharpening Filter / Concept

This	drawing	shows	the	signal	flow	for	a	general	sharpening	filter.	The	low-pass	filter	Fn	can	
be	established	by	a	Gaussian	bell	as	explained	in	the	chapters	�	to	3.

The	input	C	is	an	unfiltered	value	C=R,G	or	B	at	the	center	positition	of	the	pixel	box	in	the	
image.	The	output	D	is	the	sharpened	value	at	the	same	center	position.	The	low-pass	filter	
executes	the	averaging	as	usual	by	a	Gaussian	bell.	The	filtered	value	is	subtracted	from	the	
unfiltered	value,	but	the	two	are	muliplied	by	factors	(K	–	�)	and	K.		

	 	 	 D	=	[K	–	(K	–	�)	Fn]	C

The	factor	K	has	this	meaning:	

K=�		 no	sharpening
K= 2	 sharpening	as	in	previous	chapter
K=�.5	 less	sharpening	than	for	K=2

K=2	is	a	very	reasonable	value,	but	sometimes	a	little	more	control	for	the	filtering	is	welcome.
This	filter	has	two	degrees	of	freedom:		the	filtering	order	n	and	the	factor	K.

For	a	uniformly	colored	area	the	low-pass	filter	delivers	just	the	input	C	and	the	total	output	
D	is	the	unchanged	input	C	as	well.	

Note:	the	sharpening	filter	as	above	and	the	blurring	filter	(low-pass)	are	not	complementary.	
This	means	that	sequential	applications	do	not	cancel	each	other.

9

8.2 General n-order Sharpening Filter / Example

Example:	a	weak	sharpening	filter	with	n=�	and	K=�.5.	Mainly	for	eyes	and	hair	in	portraits.

The	upper	diagram	shows	the	Bode	plot	for	the	low-pass	filter.	The	lower	diagram	shows	the	
Bode	plot	for	the	sharpening	filter.	Coefficients	were	re-calculated	according	to	chapter	�2.

F K
K= − −0 0 0

0 � 0
0 0 0

�
2 5

� 8 � 4 � 8
� 4 � � 4
� 8 � 4 � 8.

/ / /
/ /
/ / /

Use	in	Acrobat
72	dpi	/	zoom	200%

�0

Procedure FContour(xa,ya,xe,ye: Integer; thresh: Single);
{ Uses 3x3 points in area xa..xe, xa..ye }
{ 1 2 3
 4 5 6
 7 8 9 }
Var cc,clim : Single;
 x,y,c1,c2,c3,c4,c6,c7,c8,c9 : Integer; { 16 bit }
 prgb1,prgb2,prgb3,prgb4,prgb6,prgb7,prgb8,prgb9: LongInt; { 32 bit }
Begin
clim:=50+250*(thresh-0.1); { Threshold 0...1 }
FMemGrYIQ (xa,ya,xe,ye,xa,ya,2); { FMem gray }
FMemtoPMem (xa,ya,xe,ye,xa,ya); { PMem copy }
ColToSx (0,0,gmx,gmy,stan,whit); { Screen white, global gmx,gmy }
For y:=ya+1 To ye-1 Do
 Begin
 For x:=xa+1 To xe-1 Do
 Begin
 prgb1:=GetPixel (x-1,y-1); { PMem }
 prgb2:=GetPixel (x ,y-1);
 prgb3:=GetPixel (x+1,y-1);
 prgb4:=GetPixel (x-1,y);
 prgb6:=GetPixel (x+1,y);
 prgb7:=GetPixel (x-1,y+1);
 prgb8:=GetPixel (x ,y+1);
 prgb9:=GetPixel (x+1,y+1);
 c1:=prgb1 AND $000000FF;
 c2:=prgb2 AND $000000FF;
 c3:=prgb3 AND $000000FF;
 c4:=prgb4 AND $000000FF;
 c6:=prgb6 AND $000000FF;
 c7:=prgb7 AND $000000FF;
 c8:=prgb8 AND $000000FF;
 c9:=prgb9 AND $000000FF;
 cc:=Abs(c1-c9)+Abs(c2-c8)+Abs(c3-c7)+Abs(c4-c6);
 If cc>clim Then SetSixel(x,y,0); { Screen black }
 End; { x }
 End; { y }
End;

9.1 Contour Filters / Concept

The	well-known	contour	filters	by	Sobel,	Roberts	and	Prewitt	[3]	use	3x3	kernels,	which	have	
to	be	applied	twice:	in	x-	and	y-direction.	
They	can	be	easily	substituted	by	the	nonlinear	filter	below,	which	finds	contours	in	one	pass.	
The	sum	of	the	absolute	values	of	pixel	differences	in	four	directions	is	compared	with	an	
adjustable	threshold.	
The	example	works	for	gray	images.	The	actual	implementation	calculates	contributions	of	
three	channels	RGB	and	is	programmed	entirely	in	assembly	code.	
The	contour	filter	creates	a	black-on-white	mask,	which	is	normally	hidden.	At	black	points,	
the	original	photo	can	be	blurred	(anti-aliasing)	or	sharpened	(enhanced	edges).	
The	famous	Canny Edge	filter	is	based	on	a	multi-pass	approach.	Opposed	to	the	filters	above,	
the	contour	is	delivered	by	single	pixel	lines	or	fragments	of	them.

��

9.2 Contour Filters / Examples

Use	in	PDF
72	dpi	/	zoom	200%

Threshold	0.5

�2

10.1 Motion Blur / Concept / Example 45°

Motion	blur	can	be	created	by	an	elliptic	Gaussian	bell.	The	longer	axis	‘a’	is	aligned	with	the	
velocity	vector.	The	elliptic	Gaussian	bell	is	created	in	coordinates	u,v	for	an	axis	aligned	ellipse	
and	then	transformed	into	a	rotated	ellipse	in	x,y.
The	filter	box	contains	many	zeros	and	values	near	to	zero.	The	speed	can	be	increased	by	
rounding	near-zeros	to	zero	and	not	executing	filtering	for	these	weight	factors.	A	more	tricky	
solution	could	use	a	list	of	valid	weight	factors.
The	effect	is	very	similar	to	motion	blur	by	Photoshop®.

Va:=intens; { Velocity 0...2 }
n:=Round(10*Va);
If n<1 Then n:=1;
a1:=0.2+0.5*n;
b1:=0.2;
a2:=Sqr(a1);
b2:=Sqr(b1);
siccoc(-angle*wrad,s,c); { Fast sine,cosine }
k:=1; fmax:=0;
For y:=-n to n Do
For x:=-n to n Do
Begin
u:=+c*x+s*y;
v:=-s*x+c*y;
fsk:=exp(-0.5*(u*u/a2+v*v/b2)));
fmax:=fmax+fsk;
fsk[k]:=fsk;
Inc(k);
End;
k:=1;
For y:=-n to n Do
For x:=-n to n Do
Begin
fsk[k]:=fsk[k]/fmax;
Inc(k);
End;

�2

�3

11.1 Laplacian Filters / Concept / Preliminary

Laplacian	filters	are	used	e.g.	in	the	context	of	the	Canny Edge	algorithm.
A	general	Laplacian	filter	is	derived	from	a	Gaussian	bell	as	the	sum	of	the	second	derivatives	
(Laplacian	of	Gaussian,	LoG):

f x y e

w x y f f

e

w

x y

xx yy

x y
x y

(,)

(,)

()

=
= +

= −

− +

− +
+

2 2

2

2 2

2

2

2

2

2
2

2 2

2
�

σ

σ
σσ

((,) ()-x y e rr= −2 � 2

For	convenience,	the	leading	factor	was	ignored	and	the	sign	reversed.	

For	cross	sections	of	the	functions	f(x,y)	and	w(x,y)	in	one	direction,	we	can	set	y= 0.	This	is	
not	the	same	as	drawing	the	functions	for	the	bell	f(x)	and	w(x).	Here	we	would	have	w(σ)=	
0.	For	the	function	w(x,y)	we	have	w(σ,σ)=0.

The	graphic	shows	the	bell	 (red),	 the	Laplacian	filter	gain	 in	one	direction	(green)	and	an	
equivalent	Damped	Cosine	(blue),	which	is	a	kind	of	Gabor	filter.	
Tic	marks	are	in	sigma-distance.

For	a	sufficiently	large	kernel	and	properly	normalized,	this	filter	will	work	blurring	with	edge	
enhancement.	This	is	agreeable	for	noisy	images.
Opposed	to	the	design	as	above,	the	simplest	Laplacian	filter	for	edge	detection	is	a	high-pass	
filter	(here	with	reversed	sign,	compared	to	text	books,	which	does	not	matter):	

0 � 0
� 4 �

0 � 0

−
− + −

−

The	LoG	filter	and	the	Damped	Cosine	filter	can	be	converted	into	true	band-pass	filters	(high-	
pass	for	smallest	kernel)	by	a	special	normalization:	
Sum	of	positive	values	equal	to	+�,	sum	of	negative	values	equal	to	-�.
The	following	examples	are	valid	for	this	normalization.

�4

11.2 Laplacian Filters / Band-Pass / Code

This	code	was	tested:

n:=Round(radius);
If n<1 Then n:=1; If n>16 Then n:=16;
sig:=0.465*n; s2:=2*Sqr(sig);
k:=1; fp:=0; fm:=0; Pfil:=2;
Case PFil Of
1: Begin
For y:=-n to n Do
For x:=-n to n do
Begin
r2:=(Sqr(x)+Sqr(y))/s2;
fsk:=exp(-r2)*(r2-1);
If fsk>0 Then fp:=fp+fsk Else fm:=fm-fsk;
fs[k]:=fsk;
Inc(k);
End;
End;
2: Begin
For y:=-n to n Do
For x:=-n to n do
Begin
r2:=Sqr(x)+Sqr(y);
r1:=1.25*pi*Sqrt(r2)/n;
r2:=r2/s2;
fsk:=exp(-r2)*cos(r1);
If fsk>0 Then fp:=fp+fsk Else fm:=fm-fsk;
fs[k]:=fsk;
Inc(k);
End;
End;
{ Alternatives for simple filters }
3: Begin
n:=1;
fs[1]:=-0.5; fs[2]:=-1; fs[3]:=-0.5;
fs[4]:=-1; fs[5]:=+8; fs[6]:=-1;
fs[7]:=-0.5; fs[8]:=-1; fs[9]:=-0.5;
fp:=8;
fm:=6;
End;
4: As on previous page

{ Contrast=0..10 }
k:=1;
For y:=-n to n do
For x:=-n to n do
Begin
fsk:=fs[k];
If fsk>0 Then fs[k]:=contr*fsk/fp Else fs[k]:=contr*fsk/fm;
Inc(k);
End;

�5

11.3 Laplacian Filters / Band-Pass / Bode Plots

Bode	plots	for	normalized	
band-pass	filters	for	n=8

Use	in	Acrobat
72	dpi	/	zoom	200%

	
Laplacian	band-pass	
filter

	
Damped	Cosine	
Better	results	for	images

Optimized	filter	
This	delivers		bad	results	
for	images	(double	lines)

�6

11.4 Laplacian Filters / Band-Pass / Examples

Application	of	band-pass	filters	for	n=8,	
contrast=2	and	background	gray	�28.

Noise	can	be	removed	by	trilevel	posteri-
zation.

Bottom	left:		 Laplacian	band-pass

Bottom	right:		Damped	Cosine	band-pass

�6

�7

12. Bode Plots for 2D Filters

Filters	with	weight	factors	w(x,y)	are	called	2D	filters.	Bode	plots	are	shown	for	�D	weight	
factors	w(x).
The	2D	filters	have	(mostly)	radial	symmetry,	but	it	is	not	correct	to	use	just	the	center	row	
values	as	weight	factors	w(x)	for	the	Bode	plots.

An	image	may	consist	of	a	left	dark	gray	half	and	a	right	light	gray	half.	It	has	a	vertical	edge.	
Obviously	it	is	possible	to	achieve	by	a	one-row	filter	w(x)	the	same	effect	as	using	the	2D	
filter	-	the	edge	can	be	blurred	or	sharpened.	
The	�D	filter	w(x)	consists	of	the	sum	of	the	weight	factors	w(x,yi)	in	each	column	of	the	2D	
filter.

The	one-row	filter	w(x)	is	normalized	as	described	in	chapter	6.
For	low-pass	filters:
Sum	of	positive	factors:		 +2
Sum	of	negative	factors:	 	-�
For	band-pass	and	high-pass	filters	(eventually	using	a	contrast	factor):
Sum	of	positive	factors:	 +�
Sum	of	negative	factors:	 	-�		

Example	for	a	Laplacian	band-pass:

n:=8;
sig:=0.465*n;
s2 :=2*Sqr(sig);
For x:=-n to n do
 Begin
 fsx:=0;
 For y:=-n to n do
 Begin
 r2 :=(Sqr(x)+Sqr(y))/s2;
 fsx:=fsx+exp(-r2)*(1-r2);
 End;
 fs[x]:=fsx;
 End;
fp:=0; fm:=0;
For x:=-n to n do
 Begin
 fsx:=fs[x];
 If fsx>0 Then fp:=fp+fsx Else fm:=fm-fsx;
 End;
For x:=-n to n do
 Begin
 fsx:=fs[x];
 If fsx>0 Then fs[x]:=fsx/fp Else fs[x]:=fsx/fm;
 End;

�8

13. References

Gernot Hoffmann
September 25 / 2001 — April 30 / 2014

Website
Load browser / Click here

[�]	 Elmar	Schrüfer
	 Signalverarbeitung
	 Carl	Hanser	Verlag,	München,Wien	�990

[2]	 Samuel	D.Stearns
	 Digitale	Verarbeitung	analoger	Signale
	 R.Oldenbourg	Verlag,	München	Wien	�988

[3]	 Carsten	Köhn
	 Bildanalyse	und	Bilddatenkompression
	 Carl	Hanser	Verlag	München	Wien	�996

[4]	 Gernot	Hoffmann
	 Fast	Fourier	Transform	/	Descreening
	 http://docs-hoffmann.de/fft3�052003.pdf

	 Web	docs	about	the	filters	will	be	added	later.

	 This	doc
	 http://docs-hoffmann.de/gauss2509200�.pdf

	 February	07	/	20�3:
	 Conversion	from	PageMaker	to	InDesign
	 May	have	caused	minor	layout	bugs

�8

http://docs-hoffmann.de/
http://docs-hoffmann.de/fft31052003.pdf
http://docs-hoffmann.de/gauss25092001.pdf

