
�1

Gernot Hoffmann

Euler Angles
and

Projections

Coordinate Rotations 2
Camera Angles 2
Tilted Image Angles 3
Aircraft Angles 3
Gyro Angles 4
Single Axis 3D Rotation 4
Matrix Features 4
Aligning a Body Axis 5
Body Rotation 5
Orthogonal Projection 6
Non-Orthogonal Projection 7
Projective Mapping 7
Phi = Arctan(n/d) 8
Angle between two Vectors 9
Aircraft Simulation 10

Contents
Coordinate Rotations 2
Camera Angles 2
Tilted Image Angles 3
Aircraft Angles 3
Gyro Angles 4
Single Axis 3D Rotation 4
Matrix Features 4
Aligning a Body Axis 5
Body Rotation 5
Orthogonal Projection 6
Non-Orthogonal Projection 7
Projective Mapping 7
Phi = Arctan(n/d) 8
Angle between two Vectors 9
Aircraft Simulation 10

Contents

�22

A rotational coordinate transformation delivers different column
matrices for the same vector x .
Rotation about the x-axis from CS1 to CS2 : x2 = X21 x1
Rotation about the y-axis from CS1 to CS2 : x2 = Y21 x1
Rotation about the z-axis from CS1 to CS2 : x2 = Z21 x1

 1 0 0
X21 = 0 cos(α) sin (α)

 0 -sin (α) cos(α)

 cos(β) 0 -sin (β)
Y21 = 0 1 0

 sin (β) 0 cos(β)

 cos(γ) sin (γ) 0
Z21 = - sin (γ) cos(γ) 0

 0 0 1

The rotation about the y-axis has a different sign pattern.
Compound matrix rotations about three axes depend on the
sequence.

[]
[]

For this sequence we find the matrix C41:

 cos(β) cos(γ) - sin(α) sin (β) sin(γ) cos(β) sin(γ)+sin(α) sin(β) cos(γ) -cos(α) sin(β)
C41 = -cos(α) sin (γ) cos(α) cos(γ) sin(α)

 sin (β) cos(γ)+sin(α) cos(β) sin(γ) sin (β) sin(γ) - sin(α) cos(β) cos(γ) cos(α) cos(β)

The case of C41 with β = 0 is given by D41 :

 cos(γ) sin (γ) 0
D41 = - cos(α) sin(γ) cos(α) cos(γ) sin (α)

 sin (α) sin(γ) -sin (α) cos(γ) cos(α)

[]

[]

Camera Angles

Coordinate Rotations

[]

The optical axis for cameras, may be real or fictitious for computer
graphics, is here always aligned with the y-axis.
It does not seem natural to use the z-axis, because the view of a
camera is nearly never vertical.
The image appears then in the z, x-plane.
The sequence is

x4 = Y43 X32 Z21 x1 = C41 x1 .

Turn first about the azimuth axis z by γ , then about the elevation
axis x by α and finally about the roll axis y by β . For computer
graphics we use β = 0 and for real cameras β≈0 is a parameter of
the camera error model.

Euler Angles

�

�33

For the projection on tilted image planes we need additionally a
sequence, where the rotation of the camera can be compensated
by a rotation of the image plane deviating from the orthogonal
orientation. This is necessary for special purposes in computer
graphics, e.g. the rectification of verticals, and also for the error
model of CCD-cameras.
Therefore Z and X are swapped:

x4 = Y43 Z32 X21 x1 = T41 x1 .

Turn first about the x-axis by δ and then about the z-axis by ε .
The third rotation is actually not needed and can be replaced later
by β in C41 . Set Y43 = I .

cos(ε) cos(δ) sin (ε) sin (δ) sin (ε)
T41 = - sin (ε) cos(δ) cos(ε) sin (δ) cos(ε)

 0 - sin (δ) cos(δ)

Tilted Image Angles

[]

Aircraft Angles
The next sequence is used for aircraft and other vehicles like cars:

x4 = X43 Y32 Z21 x1 = A41 x1 .

Rotate by the yaw angle ψ about the z-axis, by the pitch angle θ
about the y-axis and the roll angle φ about the x-axis.

Here we have a minor problem: in flight mechanics, the nose of
the plane is in x-direction, the right wing in y-direction and z points
downwards (German standard LN9300).
For general applications the y-axis points to the left and the z-axis
quite naturally upwards, but nose down is now a positive pitch.

Nevertheless the same Matrix A41 is valid for both cases,
provided the axes of CS1 and CS4 are in the same orientation.
Note: positive angles are always in right screw direction.

 cos(θ) cos(ψ) cos(θ) sin(ψ) - sin(θ)
A41= -cos(φ) sin (ψ) +sin (φ) sin(θ) cos(ψ) cos(φ) cos(ψ) +sin (φ) sin (θ) sin (ψ) sin (φ) cos(θ)

 sin (φ) sin (ψ) +cos(φ) sin(θ) cos(ψ) - sin (φ) cos(ψ) +cos(φ) sin (θ) sin (ψ) cos(φ) cos(θ)[]
�

�44

In gyro instruments the last angle is assigned to the rotation of
the flywheel.

x4 = Z43 Y32 X21 x1 = G41 x1

The first two angles: α about the x-axis and β about the y-axis.
The third degree of freedom γ about the z-axis belongs to the
rotation of the gyro flywheel, whereas the first two angles are fixed
to the cardan frames.
The figure shows as usual the situation for zero angles. For non
zero angles the axes of rotation are not orthogonal to each other.

Gyro Angles

Single and compound rotation matrices are orthonormal: C-1 = CT . Therefore it is not necessary to write
down the inverse rotational transformation like x1 = C14 x4 = C41

-1 x4 = C41
T x4 explicitly, but it is worth

to mention, that swapping the indices means the same as transposing the matrix.

Linearized matrices are possible, if the angles are small. For example in the gyro matrix G41 we can
sometimes assume sin(α)≈α , cos(α)≈1, sin(β)≈β , cos(β)≈1 . Furtheron products of small angles must
be neglectable: α β≈0 . Products of completely linearized matrices are commutative.
Linearized matrices are not formalistically orthonormal, but this characteristic can be achieved by neglecting
products of small angles.

Matrix Features

 cos(β) cos(γ) cos(α) sin (γ) + sin(α) sin(β) cos(γ) sin (α) sin (γ) - cos(α) sin (β) cos(γ)
G41 = cos(β) sin (γ) cos(α) cos(γ) - sin(α) sin(β) sin (γ) sin (α) cos(γ) + cos(α) sin (β) sin (γ)
 sin (β) - sin (α) cos(β) cos(α) cos(β)

[]
Single Axis 3D-Rotation
Once an orthonormal rotation matrix is given, e.g. the Aircraft Matrix A = (aik) with numbers only, the
rotation can be described as a single axis rotation about an axis n with the angle η :

η = arccos [0.5·(a11 + a22 + a33 - 1)]

n = [0.5 / sin(η)] (a32 - a23, a13 - a31, a21 - a12)T

Equations found in : J.Hoscheck + D.Lasser :
Grundlagen der geometrischen Datenverarbeitung, B.G.Teubner Stuttgart, 1992

Rotation matrices have one eigenvalue λ = 1. The rotation axis n is the normalized eigenvector.
By A x = λ x we get A x = x, x = A-1 x = ATx. Then we find (A-AT) x = 0 . Now it can be shown easily, that
n = (a32 - a23, a13 - a31, a21 - a12)T is an eigenvector. The normalization could be done without sin(η) .
The equation for η is a result of the invariance of the sum of the diagonal elements with respect to
similarity transformations of the type NT A N = Z , using a Z rotation as mentioned in the first chapter .

�

�55

x
p

r

u

v

n

x

y

z
x

1
Object point before rotation

x
2

Object point after rotation

p Reference point of axis

n Direction vector, normalized

η Rotation angle (right screw positive)

u Projection of r on n

v Orthogonal component of r

a ,b Orthogonal vector base, each length v

r = x
1
 - p

u = (r
T
n)n

v = r - u

a = v

b = n × a

x
2

= p + u + a cos(η) + b sin (η)

More about Object Rotations can be found here:

Body Rotation about an Axis

Aligning a Body Axis
Sometimes a body coordinate system has to be aligned to a

normal vector n=(n
x
,n

y
,n

z
)
T
. Only two angles can be aligned,

the third is free.

If we use the A-sequence, then a vehicle is properly aligned

to a hill road.

Turn first the yaw angle into the desired azimuth direction

and then the pitch angle in order to put the car´s z
4
-axis

along the normal direction.

Atangens (atan2 in C/C++) is explained on the last page.

http://www.fho-emden.de/~hoffmann/rotate09072002.pdf

x�	 	 Object	point	before	rotation

x�	 	 Object	point	after	rotation

p	 	 Reference	point	of	axis

n	 	 Direction	vector,	normalized

η	 	 Rotation	angle	(right	screw	positive)

u	 	 Projection	of	 r	on	n

v	 	 Orthogonal	component	of	r

a,b		 Orthogonal	vector	base,	each	length		v	

r	 =	 x�	-	p

u	 =	 (rTn)n

v	 =	 r	 -	 u

a	 =		 v

b	 =		 n	×	a

x�	 =	 p	+	u	+	a cos(η)	+	b	sin (η)	

More	about	Object	Rotations	can	be	found	here:

Body Rotation about an Axis

Aligning a Body Axis
Sometimes	a	body	coordinate	system	has	to	be	aligned	
to	a	normal	vector	n=(nx,ny,nz)

T.		Only	two	angles	can	be	
aligned,	the	third	is	free.	
If	 we	 use	 the	 A-sequence,	 then	 a	 vehicle	 is	 properly	
aligned	to	a	hill	road.	
Turn	first	the	yaw	angle	into	the	desired	azimuth	direction	
and	then	the	pitch	angle	in	order	to	put	the	car´s	z�-axis	

along	the	normal	direction.

eps = 1e-16;
r = Sqrt(nx·nx+ny·ny); the=0; psi=0;
phi=0;
If r>eps Then
Begin
	 Atangens(ny,nx,psi,flag);
	 Atangens(r,	nz,the,flag);

End Else If nz<0 Then the=pi;

Atangens	(atan�	in	C/C++)	is	explained	on	the	last	

page.

http://docs-hoffmann.de/rotate0907�00�.pdf �

http://docs-hoffmann.de/rotate09072002.pdf

�66

Orthogonal Projection
A camera is positioned in a = (a, b, c)T in the object
space x = (x, y, z)T and rotated by α, β, γ, using the
C-sequence with C = C41 or D41 for β = 0 .
In computer graphics the camera is focussed to the
viewpoint. The angles are defined by the camera
position a and the viewpoint av = (av, bv, cv)

T.
The image plane or viewplane is centered in the
viewpoint and orthogonal to the viewline.
Objects near to the viewplane are mapped by scale-
factor one to the viewplane.
Once the image is created on the viewplane, it can
be mapped to any viewport by a workstation trans-
formation.
This means: We put a frame on the viewplane and
the content is shown in the viewport.
The word frame is used instead of window. In GKS and PHIGS a window cuts a part of the real word, here
the specific viewplane content. We use the word window for a viewport on a monitor.
The two angles α and γ can be calculated by the procedure Atangens on the last page.
The signs are relevant. Furtheron, d is the distance of the viewpoint from the center of projection.

tan(γ) = [+(a-av)] / [- (b-bv)]

tan(α) = cos(γ) [- (c - cv)] / [- (b-bv)]

d = Sqrt [(a-av)2 + (b-bv)2 + (c-cv)2]

The camera itself is represented by coordinates u = (u, v, w)T. The view plane r, t is part of the „image
space“ r = (r, s, t)T, which is for formalistical reasons sometimes defined in three dimensions with s= 0.
The projection of an object point x = (x, y, z)T onto the orthogonal viewplane is given by this set of
equations:

u = C (x - a)

r = d u / v
t = d w / v

For a parallel projection we have simply r = u and t = w .

A completely linear implicite formulation is found by using the matrix A :

A =

u = C (x - a)

A u = 0

[]-1 r / d 0
 0 t / d -1

tan()
()

tan()
()

() ()

() (

g

a

=
-

- -

=
- -

- + -

= - +

a a
b b

c c

a a b b

d a a

v

v

v

v v

v

2 2

2 bb b c cv v- + -) ()2 2

tan()
()

tan()
()

() ()

() (

g

a

=
-

- -

=
- -

- + -

= - +

a a
b b

c c

a a b b

d a a

v

v

v

v v

v

� �

� bb b c cv v- + -) ()� �

�

777

Non-Orthogonal Projection
For rectified verticals or undistorted front planes we have to tilt the viewplane.
This is the same as tilting the film plane in a studio camera (e.g. SINAR).
It is not simply a rotational transformation, but the rotation matrix T41 (page 2)
is essential. f = (f, g, h)T ist the new tilted viewplane with g=0..

D = 1 - (r / d) ·tan(ε) / cos(δ) + (t / d)·tan(δ)

f = [r / cos(ε)] / D

h = [t / cos(δ) - r · tan(ε)·tan(δ)] / D

Inversion:

E = 1 + (f / d) ·cos(δ) · sin(ε) - (h / d) · sin(δ)

r = [f · cos(ε)] / E

t = [h ·cos(δ) + f· sin(ε)·sin(δ)] / E

Rectified Verticals

Orthogonal PerspectiveOrthogonal Parallel

Projective Mapping
A point x = (x, y, z)T in 3D or x=(x, y)T in 2D can be mapped to f = (f, h)T by a general algorithm without
any fictitious camera. Typical applications:
Map cube to image (drawing perspective, parallel, isometric, cabinet, and so on)
Map one quadriliteral to another (photogrammetric rectification for maps, for house façades, and so on)

D = [1 + cTx]

f = [ao + aTx] / D

h = [bo + bTx] / D

The unknown parameters a, b, c,ao, bo can be determined by q=4 points xi,fi for the 2D source or by q=6
points xi, fi for the 3D source. Of course the points shouldn´t be collinear.
Multiply both sides by the denominator and rearrange.

aTxi + 0Txi - fi cTxi + ao + 0 = fi

0Txi + bTxi - hi cTxi + 0 + bo = hi

Once rearranged in a big matrix M, this is a linear equation system for the p=8 unknowns (2D source) or
the p=11 unknowns (3D source) p = (aT, bT, cT, ao, bo)T and the right side q = (f1, h1,..., fq, hq)T.
It can be solved by the Gauss Transformation and Cholesky, because the final matrix is symmetric.

 M p = q

 MTM p = MTq 7

�

Phi = Arctan(n/d)
All	Variables	can	be	defined	as	Double	instead	of	Single=Float

Function	Atan2(n,d:	Single):	Single;
{		 f/rad=arctan(n/d);	any	n,d;	angle	+-pi;		>=387	only;			 }
{		 This	is	the	same	as	atan2	in	C/C++																				 	 	 	 	 	 	
}
Assembler;
ASM	FLD	n;	FLD	d;	FPATAN;
END;

Procedure	Atangens	(n,d:	Single;	Var	phi:	Single;	Var	flag:	Integer);
{		 phi/rad=arctan(n/d);	xy-coord:	n=y,d=x;		>=387	only
			 flag=0:	OK,	flag=1:	no	solution										 	 	 	 	 	 	 	 }
Const	eps	=	1E-16;
Begin	flag:=1;	phi:=0;
	If	(Abs(n)>eps)	Or	(Abs(d)>eps)	Then	
	Begin	flag:=0;	phi:=Atan2(n,d);	
 End;
End;

Procedure	Atangens	(n,d:	Single;	Var	phi:	Single;	Var	flag:	Integer);
{		 phi/rad=arctan(n/d);	xy-Koord.:	n=y,d=x;	
	 flag=0:	OK,	flag=1:	no	solution		 	 	 	 	 	 	 	
				Requires	only	a	standard	function	arctan(z)	for	two	quadrants		 }
Const	eps	=	1E-16;
Begin
	flag:=1;	phi:=0;	
	If	(abs(n)>eps)	Or	(abs(d)>eps)	Then
 Begin
		flag:=0;	If	abs(d)>=abs(n)	Then
		Begin		 phi:=ArcTan(n/d);		If	d	<0	Then	phi:=phi+pi;				
 End Else
		Begin		 phi:=ArcTan(-d/n);	 If	n>=0	Then	phi:=phi+0.5*pi	Else	phi:=phi+1.5*p
i;
 End;
 End;
End;

Procedure	Acosinus	(x:	Single;	Var	phi:	Single;	Var	Flag:	Integer);
{	phi/rad=arccos(x)	
		flag=0:	OK,	flag=1:	no	solution		 	 	 	 	 	 	 	 }
Var	x2:	Single;
Begin	flag:=1;	phi:=0;	x2:=sqr(x);
	If	x2<=1	Then		
	Begin	flag:=0;	Atangens	(sqrt(1-x2),x,phi,flag);	
 End;
End;

Procedure	XPowerA	(x,a:	Single;	Var	y:	Single;	Var	flag:	Integer);
{	y=x^a	for	x>0	;	flag=0:	OK,	flag=1:	no	solution										 	 	 }
Const	eps=1E-16;
Begin	flag:=0;	

9

Angle between two Vectors
Function	Angle2	(A,B:	XYZ):	Single;
{	Angle	0..pi	between	vectors	A	and	B		 }
{	Requires	Norm(A)>0	and	Norm(B)>0		 }
{	tan(a)	=	Norm(AxB)/(A.B)	 	 	 	 }
{	Don´t	use	y	=	arccos(x)	!	 	 	 }
Var		n,d:	Single;
Begin
With	A	Do	n:=Sqr(y*B.z-z*B.y)+Sqr(z*B.x-x*B.z)+Sqr(x*B.y-y*B.x);
With	A	Do	d:=x*B.x+y*B.y+z*B.z;
Angle2:=atan2(Sqrt(n),d);
End;

�0

Aircraft Simulation (1)

Rotate	by	the	yaw	angle	ψ	about	by	the	z-axis,	by	the	roll	angle	Φ	about	the	x-axis	and	the	pitch	angle	

θ about	the	y-axis.	These	angles	differ	from	the	A-Sequence,	even	for	the	yaw	angle,	but	they	can	be	

mutually	converted.	The	singularity	is	at	cos(Φ) =0	.

The	A-Sequence	and	the	B-Sequence	are	toggled	appropriately	at	Abs(sin(θ))	=	0.7	.

If	 the	 A-Sequence	 is	 actually	 used	 for	 the	 integration,	 then	 the	 angles	 for	 the	 B-Sequence	 are	

calculated.

Instead	of	four	quadrant	z=Atan�(y/ x),	a	Newton	iteration	z=Atan�(y/x)	is	used,	where	the	initial	value	

is	the	previous	value.	This	should	guarantee	consistent	angle	descriptions	without	jumps.		

If	the	B-Sequence	is	used	for	the	integration,	then	the	angles	for	the	A-Sequence	are	calculated	in	the	

same	similarly.

The	matrix	for	the	derivatives	of	the	Euler	angles	as	functions	of	the	body	fixed	angular	velocities	has	to	

be	calculated	for	both	sequences.	The	results	can	be	taken	from	the	source	code.

The	equations	of	motion	are	simplified.	There	are	no	products	of	inertia,	the	coordinates	are	in	principal	

axes	directions.	No	aerodynamic	torques	are	introduced.		The	yaw	rate	depends	on	the	roll	angle,	this	

looks	plausible.

The	control	systems	has	simple	rate	dampers	for	all	axes.	The	attitude	controller	can	be	operated	in	two	

modes:	Pitch	and	roll	or	pitch	and	yaw.	In	the	yaw	mode,	the	roll	angle	depends	on	the	heading	error.

The	motion	looks	rather	natural.

Essential	tests	are	made	by	applying	torques	about	the	body	fixed	axes.	For	one	keystroke	a	torque	is	

applied	for	one	integration	step.	It	can	be	shown,	that	the	reaction	happens	always	only	about	the	respective	

axis,	a	good	test	for	the	correct	definitions	of	the	Euler	angle	mathematics.

The	differential	equations	are	integrated	by	’False	Euler’	.	The	results	for	the	angular	velocity	from	the	first	

step	are	immediately	used	as	inputs	for	the	integration	of	the	Euler	Angles.	Standard	Euler	would	use	

always	old	values	on	the	right	side.		

In	fact	it	is	only	the	simulation	of	a	rigid	body	

which	rotates	like	an	aircraft.	Several	features	

have	to	be	considered:

Gimbal	lock	is	a	singularity	which	happens	for	

the	 A-Sequence	 in	 positions	 with	 cos(θ)=0	

and	in	the	vicinity,	e.g.	during	vertical	climb	or	

descent.

This	problem	is	solved	by	introducing	a	second	

Euler	angle	sequence:

x�	=	Y��	X��	Z��	x�	=	B��	x�	

��

Aircraft Simulation (2)

Function	ATan2(n,d:Double):	Double;
{		 f/rad=arctan(n/d);	any	n,d;	f=-pi..+pi;	>=387	only;		}
Assembler;
ASM
	FLD	n;	FLD	d;	FPATAN;
END;

Procedure	ATan3(n,d:	Double;	Var	a:	Double);
{		 Newton	Iteration	}
Var	si,co:	Double;
Begin
	SicCoc(a,si,co);
	a:=a-(d*si-n*co)/(d*co+n*si);
	SicCoc(a,si,co);
	a:=a-(d*si-n*co)/(d*co+n*si);
	SicCoc(a,si,co);
	a:=a-(d*si-n*co)/(d*co+n*si);
End;

Procedure	MatObj3Da;
{		 Transposed	A41	for	object	rotation	}
Begin
SicCoc(Ph1,sPh1,cPh1);
SicCoc(Th1,sTh1,cTh1);
SicCoc(Ps1,sPs1,cPs1);
o11:=	cTh1*cPs1;	 o12:=-cPh1*sPs1+sPh1*sTh1*cPs1;		 o13:=	sPh1*sPs1+cPh1*sTh1*cPs1;
o21:=	cTh1*sPs1;		 o22:=	cPh1*cPs1+sPh1*sTh1*sPs1;		 o23:=-sPh1*cPs1+cPh1*sTh1*sPs1;
o31:=-sTh1;							 o32:=	sPh1*cTh1;							 	 	 o33:=	cPh1*cTh1;
End;

Procedure	MatObj3Db;
{		 Transposed	B41	for	object	rotation	}
Begin
SicCoc(Ph2,sPh2,cPh2);
SicCoc(Th2,sTh2,cTh2);
SicCoc(Ps2,sPs2,cPs2);
o11:=	cTh2*cPs2-sPh2*sTh2*sPs2;		 o12:=-cPh2*sPs2;		 o13:=	sTh2*cPs2+sPh2*cTh2*sPs2;
o21:=	cTh2*sPs2+sPh2*sTh2*cPs2;		 o22:=	cPh2*cPs2;		 o23:=	sTh2*sPs2-sPh2*cTh2*cPs2;
o31:=-cPh2*sTh2;							 	 	 o32:=	sPh2;							 o33:=	cPh2*cTh2;
End;

Procedure	Integ;
{		 Rotational	differential	equations	for	a	rigid	body,	like	an	aircraft
			 Simplified	attitude	Controller	}
Var			 icTh1,icPh2:	Double;
Const		 Jx=0.6;		 Jy=1;	 Jz=1.5;
							 dampP=2;		conPhi=	4;
				 				 dampQ=3;		conThe=10;
							 dampR=2;		conPsi=	1;
							 ratePsi=1;
							 	 dT=0.1;
Begin
{		 Toggle	Euler	Angle	Sequences	if	necessary	}
EModeA:=Abs(sTh1)<0.7;
{		 Roll	damper,	Pitch	damper,	Yaw	damper
			 Txc,Tyc,Tzz	=	Command	Torques		Typical	+-2	Puls	}
			 Tx:=-dampP*wx+Txc;
			 Ty:=-dampQ*wy+Tyc;
			 Tz:=-dampR*wz+Tzc;
{		 Roll	Controller,	Pitch	Controller,	Yaw	Controller
			 Actually,	not	the	angles	but	sines	and	cosines	are	Controlled
			 Phc		=		 Command		 Roll		 angle
			 Thc		=	 Command	 Pitch		 angle
			 Psc		=		 Command	 Yaw			 angle			}

��

Aircraft Simulation (3)

		 If	CCon	Then	{	Roll	+	Pitch	}
 Begin
			 If	EmodeA	Then
 Begin
				 	If	CPsi	Then	{	Pitch	+	Yaw,	Roll	automatically		}
 Begin
						 Phc:=+conPsi*(sPs1*cPsc-cPs1*sPsc);
						 SicCoc(Phc,sPhc,cPhc);
 End;
						Tx:=Tx-conPhi*(sPh1*cPhc-cPh1*sPhc);
				 	Ty:=Ty-conThe*(sTh1*cThc-cTh1*sThc);
						Tz:=Tz-ratePsi*sPh1*cTh1;
 End Else
 Begin
						If	CPsi	Then	{	Pitch	+	Yaw,	Roll	automatically				 	 }
 Begin
						 Phc:=+conPsi*(sPs2*cPsc-cPs2*sPsc);
						 SicCoc(Phc,sPhC,cPhc);
 End;
				 	Tx:=Tx-conPhi*(sPh2*cPhc-cPh2*sPhc);
				 	Ty:=Ty-conThe*(sTh2*cThc-cTh2*sThc);
				 	Tz:=Tz-ratePsi*sPh2*cTh2;
 End;
 End;
{	Body	fixed	coordinate	system	in	principal	axes	direction			}
{	Integration	of	angular	velocities	}
wx:=wxo	 		 +	 dT*(wyo*wzo*(Jy-Jz)+Tx)/Jx;
wy:=wyo	 		 +	 dT*(wzo*wxo*(Jz-Jx)+Ty)/Jy;
wz:=wzo	 		 +	 dT*(wxo*wyo*(Jx-Jy)+Tz)/Jz;
wxo:=wx;	wyo:=wy;	wzo:=wz;
{	Integration	of	angle	derivatives	in	Mode	A=1	or	Mode	B=2		}
If	EmodeA	Then
Begin
icTh1:=1/cTh1;
Ph1:=Ph1		+	 dT*(wx	+	wy*sPh1*sTh1*icTh1	 +	 wz*cPh1*sTh1*icTh1);
Th1:=Th1		+	 dT*(wy*cPh1												 	 -	 wz*sPh1);
Ps1:=Ps1	 +	 dT*(wy*sPh1*icTh1						 	 +	 wz*cPh1*icTh1);
MatObj3Da;	{	Elements	oik,	for	object	rotation	Mode	A=1	}
Atan3		 (-o31,o33,Th2);
SicCoc	 (Th2,sTh2,cTh2);
Atan3		 (o32*cTh2,o33,Ph2);
SicCoc	 (Ph2,sPh2,cPh2);
Atan3		 (-o12,o22,Ps2);
SicCoc	 (Ps2,sPs2,cPs2);
End Else
Begin
icPh2:=1/cPh2;
Ph2:=Ph2	 +	 dT*(wx*cTh2									 	 +	 wz*sTh2);
Th2:=Th2	 +	 dT*(wx*sTh2*sPh2*icPh2	+	wy		-	 wz*cTh2*sPh2*icPh2);
Ps2:=Ps2	 +	 dT*(-wx*sTh2*icPh2											 +	 wz*cTh2*icPh2);
MatObj3Db;	{	Elements	oik,	for	object	rotation	Mode	B=2	}
Atan3		 (o32,o33,Ph1);
SicCoc	 (Ph1,sPh1,cPh1);
Atan3		 (-o31*cPh1,o33,Th1);
SicCoc(Th1,sTh1,cTh1);
Atan3		 (o21,o11,Ps1);
SicCoc	 (Ps1,sPs1,cPs1);
End;
End;

Gernot	Hoffmann,	
November	��	/	�00�	—	February	��	/	�0��

Website
		Load	browser,	click	here

