
�1

Gernot Hoffmann

Euler Angles
and

Projections

Coordinate Rotations 2
Camera Angles 2
Tilted Image Angles 3
Aircraft Angles 3
Gyro Angles 4
Single Axis 3D Rotation 4
Matrix Features 4
Aligning a Body Axis 5
Body Rotation 5
Orthogonal Projection 6
Non-Orthogonal Projection 7
Projective Mapping 7
Phi = Arctan(n/d) 8
Angle between two Vectors 9
Aircraft Simulation 10

Contents
Coordinate Rotations				 2
Camera Angles							 2
Tilted Image Angles					 3	
Aircraft Angles							 3
Gyro Angles								 4
Single Axis 3D Rotation				 4
Matrix Features						 4
Aligning a Body Axis					 5
Body Rotation							 5
Orthogonal Projection				 6
Non-Orthogonal Projection		 	 7
Projective Mapping				 	 7
Phi = Arctan(n/d)					 	 8
Angle between two Vectors			 9
Aircraft Simulation				 10

Contents

�22

A rotational coordinate transformation delivers different column
matrices for the same vector x .
Rotation about the x-axis from CS1 to CS2 : x2 = X21 x1
Rotation about the y-axis from CS1 to CS2 : x2 = Y21 x1
Rotation about the z-axis from CS1 to CS2 : x2 = Z21 x1

 1 0 0
X21 = 0 cos(α) sin (α)

 0 -sin (α) cos(α)

 cos(β) 0 -sin (β)
Y21 = 0 1 0

 sin (β) 0 cos(β)

 cos(γ) sin (γ) 0
Z21 = - sin (γ) cos(γ) 0

 0 0 1

The rotation about the y-axis has a different sign pattern.
Compound matrix rotations about three axes depend on the
sequence.

[]
[]

For this sequence we find the matrix C41:

 cos(β) cos(γ) - sin(α) sin (β) sin(γ) cos(β) sin(γ)+sin(α) sin(β) cos(γ) -cos(α) sin(β)
C41 = -cos(α) sin (γ) cos(α) cos(γ) sin(α)

 sin (β) cos(γ)+sin(α) cos(β) sin(γ) sin (β) sin(γ) - sin(α) cos(β) cos(γ) cos(α) cos(β)

The case of C41 with β = 0 is given by D41 :

 cos(γ) sin (γ) 0
D41 = - cos(α) sin(γ) cos(α) cos(γ) sin (α)

 sin (α) sin(γ) -sin (α) cos(γ) cos(α)

[]

[]

Camera Angles

Coordinate Rotations

[]

The optical axis for cameras, may be real or fictitious for computer
graphics, is here always aligned with the y-axis.
It does not seem natural to use the z-axis, because the view of a
camera is nearly never vertical.
The image appears then in the z, x-plane.
The sequence is

x4 = Y43 X32 Z21 x1 = C41 x1 .

Turn first about the azimuth axis z by γ , then about the elevation
axis x by α and finally about the roll axis y by β . For computer
graphics we use β = 0 and for real cameras β≈0 is a parameter of
the camera error model.

Euler Angles

�

�33

For the projection on tilted image planes we need additionally a
sequence, where the rotation of the camera can be compensated
by a rotation of the image plane deviating from the orthogonal
orientation. This is necessary for special purposes in computer
graphics, e.g. the rectification of verticals, and also for the error
model of CCD-cameras.
Therefore Z and X are swapped:

x4 = Y43 Z32 X21 x1 = T41 x1 .

Turn first about the x-axis by δ and then about the z-axis by ε .
The third rotation is actually not needed and can be replaced later
by β in C41 . Set Y43 = I .

cos(ε) cos(δ) sin (ε) sin (δ) sin (ε)
T41 = - sin (ε) cos(δ) cos(ε) sin (δ) cos(ε)

 0 - sin (δ) cos(δ)

Tilted Image Angles

[]

Aircraft Angles
The next sequence is used for aircraft and other vehicles like cars:

x4 = X43 Y32 Z21 x1 = A41 x1 .

Rotate by the yaw angle ψ about the z-axis, by the pitch angle θ
about the y-axis and the roll angle φ about the x-axis.

Here we have a minor problem: in flight mechanics, the nose of
the plane is in x-direction, the right wing in y-direction and z points
downwards (German standard LN9300).
For general applications the y-axis points to the left and the z-axis
quite naturally upwards, but nose down is now a positive pitch.

Nevertheless the same Matrix A41 is valid for both cases,
provided the axes of CS1 and CS4 are in the same orientation.
Note: positive angles are always in right screw direction.

 cos(θ) cos(ψ) cos(θ) sin(ψ) - sin(θ)
A41= -cos(φ) sin (ψ) +sin (φ) sin(θ) cos(ψ) cos(φ) cos(ψ) +sin (φ) sin (θ) sin (ψ) sin (φ) cos(θ)

 sin (φ) sin (ψ) +cos(φ) sin(θ) cos(ψ) - sin (φ) cos(ψ) +cos(φ) sin (θ) sin (ψ) cos(φ) cos(θ)[]
�

�44

In gyro instruments the last angle is assigned to the rotation of
the flywheel.

x4 = Z43 Y32 X21 x1 = G41 x1

The first two angles: α about the x-axis and β about the y-axis.
The third degree of freedom γ about the z-axis belongs to the
rotation of the gyro flywheel, whereas the first two angles are fixed
to the cardan frames.
The figure shows as usual the situation for zero angles. For non
zero angles the axes of rotation are not orthogonal to each other.

Gyro Angles

Single and compound rotation matrices are orthonormal: C-1 = CT . Therefore it is not necessary to write
down the inverse rotational transformation like x1 = C14 x4 = C41

-1 x4 = C41
T x4 explicitly, but it is worth

to mention, that swapping the indices means the same as transposing the matrix.

Linearized matrices are possible, if the angles are small. For example in the gyro matrix G41 we can
sometimes assume sin(α)≈α , cos(α)≈1, sin(β)≈β , cos(β)≈1 . Furtheron products of small angles must
be neglectable: α β≈0 . Products of completely linearized matrices are commutative.
Linearized matrices are not formalistically orthonormal, but this characteristic can be achieved by neglecting
products of small angles.

Matrix Features

 cos(β) cos(γ) cos(α) sin (γ) + sin(α) sin(β) cos(γ) sin (α) sin (γ) - cos(α) sin (β) cos(γ)
G41 = cos(β) sin (γ) cos(α) cos(γ) - sin(α) sin(β) sin (γ) sin (α) cos(γ) + cos(α) sin (β) sin (γ)
 sin (β) - sin (α) cos(β) cos(α) cos(β)

[]
Single Axis 3D-Rotation
Once an orthonormal rotation matrix is given, e.g. the Aircraft Matrix A = (aik) with numbers only, the
rotation can be described as a single axis rotation about an axis n with the angle η :

η = arccos [0.5·(a11 + a22 + a33 - 1)]

n = [0.5 / sin(η)] (a32 - a23, a13 - a31, a21 - a12)T

Equations found in : J.Hoscheck + D.Lasser :
Grundlagen der geometrischen Datenverarbeitung, B.G.Teubner Stuttgart, 1992

Rotation matrices have one eigenvalue λ = 1. The rotation axis n is the normalized eigenvector.
By A x = λ x we get A x = x, x = A-1 x = ATx. Then we find (A-AT) x = 0 . Now it can be shown easily, that
n = (a32 - a23, a13 - a31, a21 - a12)T is an eigenvector. The normalization could be done without sin(η) .
The equation for η is a result of the invariance of the sum of the diagonal elements with respect to
similarity transformations of the type NT A N = Z , using a Z rotation as mentioned in the first chapter .

�

�55

x
p

r

u

v

n

x

y

z
x

1
Object point before rotation

x
2

Object point after rotation

p Reference point of axis

n Direction vector, normalized

η Rotation angle (right screw positive)

u Projection of r on n

v Orthogonal component of r

a ,b Orthogonal vector base, each length  v

r = x
1
 - p

u = (r
T
n)n

v = r - u

a = v

b = n × a

x
2

= p + u + a cos(η) + b sin (η)

More about Object Rotations can be found here:

Body Rotation about an Axis

Aligning a Body Axis
Sometimes a body coordinate system has to be aligned to a

normal vector n=(n
x
,n

y
,n

z
)
T
. Only two angles can be aligned,

the third is free.

If we use the A-sequence, then a vehicle is properly aligned

to a hill road.

Turn first the yaw angle into the desired azimuth direction

and then the pitch angle in order to put the car´s z
4
-axis

along the normal direction.

  
     
  



 

     

Atangens (atan2 in C/C++) is explained on the last page.

http://www.fho-emden.de/~hoffmann/rotate09072002.pdf

x1	 	 Object point before rotation

x2	 	 Object point after rotation

p	 	 Reference point of axis

n	 	 Direction vector, normalized

η	 	 Rotation angle (right screw positive)

u	 	 Projection of r on n

v	 	 Orthogonal component of r

a,b		 Orthogonal vector base, each length  v

r	 =	 x1 - p

u	 =	 (rTn)n

v	 =	 r - u

a	 = 	 v

b	 = 	 n × a

x2	 =	 p + u + a cos(η) + b sin (η)	

More about Object Rotations can be found here:

Body Rotation about an Axis

Aligning a Body Axis
Sometimes a body coordinate system has to be aligned
to a normal vector n=(nx,ny,nz)

T. Only two angles can be
aligned, the third is free.
If we use the A-sequence, then a vehicle is properly
aligned to a hill road.
Turn first the yaw angle into the desired azimuth direction
and then the pitch angle in order to put the car´s z4-axis

along the normal direction.

eps = 1e-16;
r = Sqrt(nx·nx+ny·ny); the=0; psi=0;
phi=0;
If r>eps Then
Begin
	 Atangens(ny,nx,psi,flag);
	 Atangens(r, nz,the,flag);

End Else If nz<0 Then the=pi;

Atangens (atan2 in C/C++) is explained on the last

page.

http://docs-hoffmann.de/rotate09072002.pdf �

http://docs-hoffmann.de/rotate09072002.pdf

�66

Orthogonal Projection
A camera is positioned in a = (a, b, c)T in the object
space x = (x, y, z)T and rotated by α, β, γ, using the
C-sequence with C = C41 or D41 for β = 0 .
In computer graphics the camera is focussed to the
viewpoint. The angles are defined by the camera
position a and the viewpoint av = (av, bv, cv)

T.
The image plane or viewplane is centered in the
viewpoint and orthogonal to the viewline.
Objects near to the viewplane are mapped by scale-
factor one to the viewplane.
Once the image is created on the viewplane, it can
be mapped to any viewport by a workstation trans-
formation.
This means: We put a frame on the viewplane and
the content is shown in the viewport.
The word frame is used instead of window. In GKS and PHIGS a window cuts a part of the real word, here
the specific viewplane content. We use the word window for a viewport on a monitor.
The two angles α and γ can be calculated by the procedure Atangens on the last page.
The signs are relevant. Furtheron, d is the distance of the viewpoint from the center of projection.

tan(γ) = [+(a-av)] / [- (b-bv)]

tan(α) = cos(γ) [- (c - cv)] / [- (b-bv)]

d = Sqrt [(a-av)2 + (b-bv)2 + (c-cv)2]

The camera itself is represented by coordinates u = (u, v, w)T. The view plane r, t is part of the „image
space“ r = (r, s, t)T, which is for formalistical reasons sometimes defined in three dimensions with s= 0.
The projection of an object point x = (x, y, z)T onto the orthogonal viewplane is given by this set of
equations:

u = C (x - a)

r = d u / v
t = d w / v

For a parallel projection we have simply r = u and t = w .

A completely linear implicite formulation is found by using the matrix A :

A =

u = C (x - a)

A u = 0

[]-1 r / d 0
 0 t / d -1

tan()
()

tan()
()

() ()

() (

g

a

=
-

- -

=
- -

- + -

= - +

a a
b b

c c

a a b b

d a a

v

v

v

v v

v

2 2

2 bb b c cv v- + -) ()2 2

tan()
()

tan()
()

() ()

() (

g

a

=
-

- -

=
- -

- + -

= - +

a a
b b

c c

a a b b

d a a

v

v

v

v v

v

� �

� bb b c cv v- + -) ()� �

�

�77

Non-Orthogonal Projection
For rectified verticals or undistorted front planes we have to tilt the viewplane.
This is the same as tilting the film plane in a studio camera (e.g. SINAR).
It is not simply a rotational transformation, but the rotation matrix T41 (page 2)
is essential. f = (f, g, h)T ist the new tilted viewplane with g=0..

D = 1 - (r / d) ·tan(ε) / cos(δ) + (t / d)·tan(δ)

f = [r / cos(ε)] / D

h = [t / cos(δ) - r · tan(ε)·tan(δ)] / D

Inversion:

E = 1 + (f / d) ·cos(δ) · sin(ε) - (h / d) · sin(δ)

r = [f · cos(ε)] / E

t = [h ·cos(δ) + f· sin(ε)·sin(δ)] / E

Rectified Verticals

Orthogonal PerspectiveOrthogonal Parallel

Projective Mapping
A point x = (x, y, z)T in 3D or x=(x, y)T in 2D can be mapped to f = (f, h)T by a general algorithm without
any fictitious camera. Typical applications:
Map cube to image (drawing perspective, parallel, isometric, cabinet, and so on)
Map one quadriliteral to another (photogrammetric rectification for maps, for house façades, and so on)

D = [1 + cTx]

f = [ao + aTx] / D

h = [bo + bTx] / D

The unknown parameters a, b, c,ao, bo can be determined by q=4 points xi,fi for the 2D source or by q=6
points xi, fi for the 3D source. Of course the points shouldn´t be collinear.
Multiply both sides by the denominator and rearrange.

aTxi + 0Txi - fi cTxi + ao + 0 = fi

0Txi + bTxi - hi cTxi + 0 + bo = hi

Once rearranged in a big matrix M, this is a linear equation system for the p=8 unknowns (2D source) or
the p=11 unknowns (3D source) p = (aT, bT, cT, ao, bo)T and the right side q = (f1, h1,..., fq, hq)T.
It can be solved by the Gauss Transformation and Cholesky, because the final matrix is symmetric.

 M p = q

 MTM p = MTq �

�

Phi = Arctan(n/d)
All Variables can be defined as Double instead of Single=Float

Function Atan2(n,d: Single): Single;
{ 	 f/rad=arctan(n/d); any n,d; angle +-pi; >=387 only; 	 }
{ 	 This is the same as atan2 in C/C++ 	 	 	 	 	 	 	
}
Assembler;
ASM FLD n; FLD d; FPATAN;
END;

Procedure Atangens (n,d: Single; Var phi: Single; Var flag: Integer);
{ 	 phi/rad=arctan(n/d); xy-coord: n=y,d=x; >=387 only
 	 flag=0: OK, flag=1: no solution 	 	 	 	 	 	 	 	 }
Const eps = 1E-16;
Begin flag:=1; phi:=0;
 If (Abs(n)>eps) Or (Abs(d)>eps) Then
 Begin flag:=0; phi:=Atan2(n,d);
 End;
End;

Procedure Atangens (n,d: Single; Var phi: Single; Var flag: Integer);
{ 	 phi/rad=arctan(n/d); xy-Koord.: n=y,d=x;
	 flag=0: OK, flag=1: no solution 	 	 	 	 	 	 	 	
 	Requires only a standard function arctan(z) for two quadrants 	 }
Const eps = 1E-16;
Begin
 flag:=1; phi:=0;
 If (abs(n)>eps) Or (abs(d)>eps) Then
 Begin
 flag:=0; If abs(d)>=abs(n) Then
 Begin 	 phi:=ArcTan(n/d); 	If d <0 Then phi:=phi+pi;
 End Else
 Begin 	 phi:=ArcTan(-d/n);	 If n>=0 Then phi:=phi+0.5*pi Else phi:=phi+1.5*p
i; 	
 End;
 End;
End;

Procedure Acosinus (x: Single; Var phi: Single; Var Flag: Integer);
{ phi/rad=arccos(x)
 flag=0: OK, flag=1: no solution 	 	 	 	 	 	 	 	 }
Var x2: Single;
Begin flag:=1; phi:=0; x2:=sqr(x);
 If x2<=1 Then
 Begin flag:=0; Atangens (sqrt(1-x2),x,phi,flag);
 End;
End;

Procedure XPowerA (x,a: Single; Var y: Single; Var flag: Integer);
{ y=x^a for x>0 ; flag=0: OK, flag=1: no solution 	 	 	 }
Const eps=1E-16;
Begin flag:=0;

�

Angle between two Vectors
Function Angle2 (A,B: XYZ): Single;
{ Angle 0..pi between vectors A and B 	 }
{ Requires Norm(A)>0 and Norm(B)>0		 }
{ tan(a) = Norm(AxB)/(A.B)	 	 	 	 }
{ Don´t use y = arccos(x) !	 	 	 }
Var n,d: Single;
Begin
With A Do n:=Sqr(y*B.z-z*B.y)+Sqr(z*B.x-x*B.z)+Sqr(x*B.y-y*B.x);
With A Do d:=x*B.x+y*B.y+z*B.z;
Angle2:=atan2(Sqrt(n),d);
End;

10

Aircraft Simulation (1)

Rotate by the yaw angle ψ about by the z-axis, by the roll angle Φ about the x-axis and the pitch angle

θ about the y-axis. These angles differ from the A-Sequence, even for the yaw angle, but they can be

mutually converted. The singularity is at cos(Φ) =0 .

The A-Sequence and the B-Sequence are toggled appropriately at Abs(sin(θ)) = 0.7 .

If the A-Sequence is actually used for the integration, then the angles for the B-Sequence are

calculated.

Instead of four quadrant z=Atan2(y/ x), a Newton iteration z=Atan3(y/x) is used, where the initial value

is the previous value. This should guarantee consistent angle descriptions without jumps.

If the B-Sequence is used for the integration, then the angles for the A-Sequence are calculated in the

same similarly.

The matrix for the derivatives of the Euler angles as functions of the body fixed angular velocities has to

be calculated for both sequences. The results can be taken from the source code.

The equations of motion are simplified. There are no products of inertia, the coordinates are in principal

axes directions. No aerodynamic torques are introduced. The yaw rate depends on the roll angle, this

looks plausible.

The control systems has simple rate dampers for all axes. The attitude controller can be operated in two

modes: Pitch and roll or pitch and yaw. In the yaw mode, the roll angle depends on the heading error.

The motion looks rather natural.

Essential tests are made by applying torques about the body fixed axes. For one keystroke a torque is

applied for one integration step. It can be shown, that the reaction happens always only about the respective

axis, a good test for the correct definitions of the Euler angle mathematics.

The differential equations are integrated by ’False Euler’ . The results for the angular velocity from the first

step are immediately used as inputs for the integration of the Euler Angles. Standard Euler would use

always old values on the right side.

In fact it is only the simulation of a rigid body

which rotates like an aircraft. Several features

have to be considered:

Gimbal lock is a singularity which happens for

the A-Sequence in positions with cos(θ)=0

and in the vicinity, e.g. during vertical climb or

descent.

This problem is solved by introducing a second

Euler angle sequence:

x4 = Y43 X32 Z21 x1 = B41 x1

11

Aircraft Simulation (2)

Function ATan2(n,d:Double): Double;
{ 	 f/rad=arctan(n/d); any n,d; f=-pi..+pi; >=387 only; }
Assembler;
ASM
 FLD n; FLD d; FPATAN;
END;

Procedure ATan3(n,d: Double; Var a: Double);
{ 	 Newton Iteration }
Var si,co: Double;
Begin
 SicCoc(a,si,co);
 a:=a-(d*si-n*co)/(d*co+n*si);
 SicCoc(a,si,co);
 a:=a-(d*si-n*co)/(d*co+n*si);
 SicCoc(a,si,co);
 a:=a-(d*si-n*co)/(d*co+n*si);
End;

Procedure MatObj3Da;
{ 	 Transposed A41 for object rotation }
Begin
SicCoc(Ph1,sPh1,cPh1);
SicCoc(Th1,sTh1,cTh1);
SicCoc(Ps1,sPs1,cPs1);
o11:= cTh1*cPs1;	 o12:=-cPh1*sPs1+sPh1*sTh1*cPs1; 	 o13:= sPh1*sPs1+cPh1*sTh1*cPs1;
o21:= cTh1*sPs1; 	 o22:= cPh1*cPs1+sPh1*sTh1*sPs1; 	 o23:=-sPh1*cPs1+cPh1*sTh1*sPs1;
o31:=-sTh1; 	 o32:= sPh1*cTh1; 	 	 	 o33:= cPh1*cTh1;
End;

Procedure MatObj3Db;
{ 	 Transposed B41 for object rotation }
Begin
SicCoc(Ph2,sPh2,cPh2);
SicCoc(Th2,sTh2,cTh2);
SicCoc(Ps2,sPs2,cPs2);
o11:= cTh2*cPs2-sPh2*sTh2*sPs2; 	 o12:=-cPh2*sPs2; 	 o13:= sTh2*cPs2+sPh2*cTh2*sPs2;
o21:= cTh2*sPs2+sPh2*sTh2*cPs2; 	 o22:= cPh2*cPs2; 	 o23:= sTh2*sPs2-sPh2*cTh2*cPs2;
o31:=-cPh2*sTh2; 	 	 	 o32:= sPh2; 	 o33:= cPh2*cTh2;
End;

Procedure Integ;
{ 	 Rotational differential equations for a rigid body, like an aircraft
 	 Simplified attitude Controller }
Var 	 icTh1,icPh2: Double;
Const 	 Jx=0.6; 	 Jy=1;	 Jz=1.5;
 	 dampP=2; 	conPhi= 4;
 	 	 dampQ=3; 	conThe=10;
 	 dampR=2; 	conPsi= 1;
 	 ratePsi=1;
 	 	 dT=0.1;
Begin
{ 	 Toggle Euler Angle Sequences if necessary }
EModeA:=Abs(sTh1)<0.7;
{ 	 Roll damper, Pitch damper, Yaw damper
 	 Txc,Tyc,Tzz = Command Torques Typical +-2 Puls }
 	 Tx:=-dampP*wx+Txc;
 	 Ty:=-dampQ*wy+Tyc;
 	 Tz:=-dampR*wz+Tzc;
{ 	 Roll Controller, Pitch Controller, Yaw Controller
 	 Actually, not the angles but sines and cosines are Controlled
 	 Phc 	= 	 Command 	 Roll 	 angle
 	 Thc 	=	 Command	 Pitch 	 angle
 	 Psc 	= 	 Command	 Yaw 	 angle }

12

Aircraft Simulation (3)

 	 If CCon Then { Roll + Pitch }
 	 Begin
 	 If EmodeA Then
 	 Begin
 	 If CPsi Then { Pitch + Yaw, Roll automatically }
 	 Begin
 		 Phc:=+conPsi*(sPs1*cPsc-cPs1*sPsc);
 	 SicCoc(Phc,sPhc,cPhc);
 	 End;
 	 Tx:=Tx-conPhi*(sPh1*cPhc-cPh1*sPhc);
 	 Ty:=Ty-conThe*(sTh1*cThc-cTh1*sThc);
 	 Tz:=Tz-ratePsi*sPh1*cTh1;
 End Else
 Begin
 	 If CPsi Then { Pitch + Yaw, Roll automatically 		 	 }
 	 Begin
 		 Phc:=+conPsi*(sPs2*cPsc-cPs2*sPsc);
 	 SicCoc(Phc,sPhC,cPhc);
 	 End;
 	 Tx:=Tx-conPhi*(sPh2*cPhc-cPh2*sPhc);
 	 Ty:=Ty-conThe*(sTh2*cThc-cTh2*sThc);
 	 Tz:=Tz-ratePsi*sPh2*cTh2;
 End;
 End;
{ Body fixed coordinate system in principal axes direction 	}
{ Integration of angular velocities }
wx:=wxo	 	 +	 dT*(wyo*wzo*(Jy-Jz)+Tx)/Jx;
wy:=wyo	 	 +	 dT*(wzo*wxo*(Jz-Jx)+Ty)/Jy;
wz:=wzo	 	 +	 dT*(wxo*wyo*(Jx-Jy)+Tz)/Jz;
wxo:=wx; wyo:=wy; wzo:=wz;
{ Integration of angle derivatives in Mode A=1 or Mode B=2 	}
If EmodeA Then
Begin
icTh1:=1/cTh1;
Ph1:=Ph1 	+	 dT*(wx +	wy*sPh1*sTh1*icTh1	 +	 wz*cPh1*sTh1*icTh1);
Th1:=Th1 	+	 dT*(wy*cPh1 	 	 -	 wz*sPh1);
Ps1:=Ps1	 +	 dT*(wy*sPh1*icTh1 	 	 +	 wz*cPh1*icTh1);
MatObj3Da; { Elements oik, for object rotation Mode A=1 }
Atan3 	 (-o31,o33,Th2);
SicCoc	 (Th2,sTh2,cTh2);
Atan3 	 (o32*cTh2,o33,Ph2);
SicCoc	 (Ph2,sPh2,cPh2);
Atan3 	 (-o12,o22,Ps2);
SicCoc	 (Ps2,sPs2,cPs2);
End Else
Begin
icPh2:=1/cPh2;
Ph2:=Ph2	 +	 dT*(wx*cTh2 	 	 +	 wz*sTh2);
Th2:=Th2	 +	 dT*(wx*sTh2*sPh2*icPh2 + wy 	-	 wz*cTh2*sPh2*icPh2);
Ps2:=Ps2	 +	 dT*(-wx*sTh2*icPh2 	 +	 wz*cTh2*icPh2);
MatObj3Db; { Elements oik, for object rotation Mode B=2 }
Atan3 	 (o32,o33,Ph1);
SicCoc	 (Ph1,sPh1,cPh1);
Atan3 	 (-o31*cPh1,o33,Th1);
SicCoc(Th1,sTh1,cTh1);
Atan3 	 (o21,o11,Ps1);
SicCoc	 (Ps1,sPs1,cPs1);
End;
End;

Gernot Hoffmann,
November 26 / 2001 — February 14 / 2013

Website
 Load browser, click here

